
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. 1513 May 5, 1995

Learning Models of Environments with
Manifest Causal Structure

Ruth Bergman
ruth@ai.mit.edu

This publication can be retrieved by anonymous ftp to publications.ai.mit.edu.

Copyright c Massachusetts Institute of Technology, 1995

This report describes research done at the Arti�cial Intelligence Laboratory of the Massachusetts Institute
of Technology. Ruth Bergman was supported by NSF grant CCR-93110888, NSF grant CCR-89114428,

and a grant from the Siemens Corporation.

Abstract

This thesis examines the problem of an autonomous agent learning a causal world model of

its environment. The agent is situated in an environment with manifest causal structure.

Environments with manifest causal structure are described and de�ned. Such environments

di�er from typical environments in machine learning research in that they are complex while

containing almost no hidden state. It is shown that in environments with manifest causal

structure learning techniques can be simple and e�cient.

The agent learns a world model of its environment in stages. The �rst stage includes a

new rule-learning algorithm which learns speci�c valid rules about the environment. The

rules are predictive as opposed to the prescriptive rules of reinforcement learning research.

The rule learning algorithm is proven to converge on a good predictive model in environ-

ments with manifest causal structure. The second learning stage includes learning higher

level concepts. Two new concept learning algorithms learn by (1) �nding correlated per-

ceptions in the environment, and (2) creating general rules. The resulting world model

contains rules that are similar to the rules people use to describe the environment.

This thesis uses the Macintosh Environment to explore principles of e�cient learning

in environments with manifest causal structure. In the Macintosh Environment the agent

observes the screen of a Macintosh computer which contains some windows and buttons. It

can click in any object on the screen, and learns from observing the e�ects of its actions.

In addition this thesis examines the problem of �nding a good expert from a sequence

of experts. Each expert has an \error rate"; we wish to �nd an expert with a low error

rate. However, each expert's error rate is unknown and can only be estimated by a sequence

of experimental trials. Moreover, the distribution of error rates is also unknown. Given a

bound on the total number of trials, there is thus a tradeo� between the number of experts

examined and the accuracy of estimating their error rates. A new expert-�nding algorithm

is presented and an upper bound on the expected error rate of the expert is derived.

Thesis Advisor: Ronald L. Rivest

Acknowledgments

I would �rst like to thank Ron Rivest, without whom both the research and this document

would not have come to be. Thanks for years of support and advice, and for hours of

discussion. I thank him especially for being supportive of my extra-curricular activities as

well as my Computer Science work.

Thanks to my readers for their advice in the last stages of the research and preparation

of this document, and for working around my unusual circumstances. I want to thank

Patrick Winston for his career counseling and life advice. Thanks to Lynn Stein for her

help in relating my work to other work in the �eld, for corrections on drafts of this thesis,

and for being a great role model.

Thanks to Eric Grimson for being much more than an academic advisor.

I thank Jonathan Amsterdam and Sajit Rao for introducing me to MIT and AI Lab

life and for being good friends in and out of the o�ce. Thanks to Jonathan for letting me

complain | two minutes at a time. Thanks to Sajit for his great optimism about AI and

for reminding me why I started graduate school when I needed the reminder.

Thanks to Libby Louie for her help in turning in this document and everything else

through the years (especially birthday cakes). Thanks to Margrit Betke and Mona Singh

for listening to practice talks, reading drafts of this thesis, and encouraging me every step

of the way.

Thanks to my friends at the AI Lab and LCS for the many good times, from discussions

over a beer at GSB, to trivial pursuit games, to dancing the night away, to jogging in

sub-freezing temperatures. In particular I want to thank Maja Mataric for many good

suggestions over the years and for being a good friend. Also thanks to Jose Robles, Ian

Horswill, and Paul Viola who helped through the hurdles of my graduate career.

Thanks to all my good friends in the Boston area who made my years as a graduate

student unforgettable and the winters... bearable.

Thanks to the Physical Education department at MIT and to Gordon Kelly for giving

me the best stress control there is | teaching aerobics.

Thanks to my family for always being there. I am grateful to my parents, Chaim and

Chava, for everything you have done for me and especially for telling me that it's okay to

get a 70 in History if I keep the 90+ in Mathematics. Thanks to my brother, Dan, for

always setting high standards to reach, and to my sister, Tammy, for making sure I don't

turn into a nerd in the process.

Last and most important I would like to thank my husband, Oren, for patience and

support through every step of preparing this thesis. Thanks for help with the math, for

reading and re-reading sections, and for learning more than you ever wanted to know about

agents and experts. But most of all thanks for (almost) �ve truly wonderful years.

Contents

1 Introduction 11

1.1 Manifest Causal Structure : 14

1.2 Learning World Models : 18

1.3 Using Causal World Models : 19

1.4 The Macintosh Environment : 20

1.5 Learning the World Model : 23

1.5.1 The Agent's World Model : 23

1.5.2 Learning Rules : 24

1.5.3 Learning New Concepts : 26

1.5.4 Evaluating the World Model : 28

1.6 Overview : 28

2 The Perceptual Interface 31

2.1 Mathematical Relations as Perceptions : 32

2.2 The Macintosh Environment : 32

2.2.1 The \Laws of Nature" in the Macintosh Environment : : : : : : : : 33

2.2.2 Characteristics of the Macintosh Environment : : : : : : : : : : : : : 34

2.2.3 Why the Macintosh Environment? | A Historical Note : : : : : : : 35

2.3 Perceptions of the Macintosh Environment : : : : : : : : : : : : : : : : : : : 36

2.3.1 Objects in the Macintosh Environment : : : : : : : : : : : : : : : : : 36

2.3.2 Relations in the Macintosh Environment : : : : : : : : : : : : : : : : 37

2.4 Summary : 40

3 Learning Rules 41

3.1 The Structure of Rules : 42

3.2 World Model Assumptions : 45

3.3 The Rule-Learning Algorithm : 45

3.3.1 noaction Rules : 47

3.3.2 Creating New Rules : 49

3.3.3 Reinforcing Good Rules and Removing Bad Rules : : : : : : : : : : 51

3.4 Rule Learning Converges : 54

3.4.1 Convergence in Deterministic Environments : : : : : : : : : : : : : : 55

3.4.2 Convergence in Probabilistic Environments : : : : : : : : : : : : : : 58

3.5 Learning Rules in the Macintosh Environment : : : : : : : : : : : : : : : : : 63

3.5.1 The Learned World Model : 64

3.5.2 Predicting with the Learned World Model : : : : : : : : : : : : : : : 64

3.5.3 Achieving a Goal : 69

5

3.6 Discussion : 72

3.6.1 Learning in New or Changing Environments : : : : : : : : : : : : : : 72

3.6.2 Time Spent Creating Rules : 73

3.6.3 Learning with Mysteries : 74

3.7 Related Approaches to Rule Learning : 75

3.8 Summary : 76

4 Correlated Perceptions as New Concepts 77

4.1 Completely Correlated Perceptions are Important : : : : : : : : : : : : : : : 79

4.2 Representing New Relations and Objects : 79

4.3 Algorithm to Collapse Correlated Perceptions into New Relations and Objects 80

4.3.1 Finding Correlated Perceptions From noaction Rules : : : : : : : : 81

4.3.2 Creating New Relations and New Objects : : : : : : : : : : : : : : : 81

4.4 Rules with New Relations and Objects : 88

4.4.1 Creating Rules with New Relations and Objects : : : : : : : : : : : 88

4.4.2 Evaluating Rules with New Relations and Objects : : : : : : : : : : 90

4.4.3 Predicting Using Rules with New Relations and Objects : : : : : : : 90

4.5 Summary : 91

5 General Rules as New Concepts 93

5.1 An Algorithm to Learn General Rules : 94

5.2 Generalizing Rules with New Relations : 98

5.3 General Rules in the Macintosh Environment : : : : : : : : : : : : : : : : : 102

5.4 Evaluating and Using General Rules : 106

5.5 Discussion : 107

5.6 Summary : 108

6 Picking the Best Expert from a Sequence 109

6.1 An AI Application: Learning World Models : : : : : : : : : : : : : : : : : : 110

6.2 Finding Good Experts from an Unknown Distribution : : : : : : : : : : : : 110

6.2.1 The Ratio Test : 111

6.2.2 An Algorithm for Finding a Good Expert : : : : : : : : : : : : : : : 112

6.2.3 E�ciency of Algorithm FindExpert : : : : : : : : : : : : : : : : : : 113

6.3 A Faster (?) Test for Experts : 116

6.3.1 The Sequential Ratio Test : 116

6.3.2 Finding a Good Expert Using the Sequential Ratio Test : : : : : : : 119

6.3.3 E�ciency of Algorithm SeqFindExpert : : : : : : : : : : : : : : : 119

6.4 Empirical Comparison of FindExpert and SeqFindExpert : : : : : : : : 123

6.5 Conclusions : 125

7 Conclusion 127

A More General Rules in the Macintosh Environment 129

B The Distance of bp from p 133

C A Closed Form Estimate For the Operating Characteristic Function 135

D The Expected Number of Coins Accepted by Algorithm SeqFindExpert137

6

List of Figures

1-1 A comparison of the domain of environments with manifest causal structure

with environments explored by other machine learning research. : : : : : : : 18

1-2 Macintosh screen situations before and after a click in Window 1 : : : : : : 22

1-3 Macintosh screen before and after a click in Window 1 close-box : : : : : : 27

2-1 A description of a Macintosh screen situation : : : : : : : : : : : : : : : : : 33

2-2 Macintosh screen situations with overlapping windows : : : : : : : : : : : : 38

3-1 Macintosh screen situations with overlapping windows : : : : : : : : : : : : 44

3-2 Outline of the Learn Algorithm : 46

3-3 Macintosh screen before and after a click in Window 1 close-box : : : : : : 48

3-4 A deterministic environment : 55

3-5 An example of a deterministic underlying environment and the corresponding

non-deterministic perceived environment : 60

3-6 A probabilistic environment : 61

3-7 Rules learned in the Macintosh Environment : : : : : : : : : : : : : : : : : 65

3-8 The Predict Algorithm : 66

3-9 A trace of a few trials in the Macintosh Environment. : : : : : : : : : : : : 67

3-10 A graph of the smoothed error values as the agent learns the EXIST relation 68

3-11 A graph of the smoothed error values as the agent learns the TY PE relation 68

3-12 A graph of the smoothed error values as the agent learns the OV relation : 69

3-13 A graph of the smoothed error values as the agent learns the X relation : : 70

3-14 A graph of the smoothed error values as the agent learns the Y relation : : 70

3-15 Starting situation for an agent with goal OV (Window 1;Window 2) = T : : 71

3-16 Intermediate situation agent with goal OV (Window 1;Window 2) = T : : : 71

3-17 Final situation for an agent with goal OV (Window 1;Window 2) = T | goal

achieved! : 72

3-18 A graph comparing the smoothed error values as the agent learns the EXIST

relation with and without mysteries : 74

3-19 A graph of the smoothed error values as the agent learns the OV relation

with and without mysteries : 75

4-1 Macintosh screen situations with overlapping windows : : : : : : : : : : : : 78

4-2 Some noaction rules for the EXIST relation on Window 1 : : : : : : : : : 82

4-3 The correlation graph for the noaction rules for the EXIST relation on

Window 1 : 83

4-4 Algorithm to �nd correlated perceptions : 84

4-5 The component graph for the EXIST relation on Window 1 : : : : : : : : 85

4-6 Algorithm to collapse correlated perceptions to new relations and new objects. 86

7

4-7 A trace of an execution of the Find-Correlations andMake-New-Relations

algorithms in the Macintosh Environment : : : : : : : : : : : : : : : : : : : 87

4-8 Examples of a few learned rules with new relations and objects : : : : : : : 89

4-9 A trace of a few predictive trials for the EXIST relation in the Macintosh

Environment. : 90

5-1 The Generalize-Rules Algorithm : 95

5-2 A subset of current and previous perceptions for a Macintosh screen situation 95

5-3 An algorithm to �nd attributes of general objects from perceptions : : : : : 96

5-4 Utility functions for the rule-generalization algorithm : : : : : : : : : : : : : 97

5-5 A subset of current and previous perceptions for a Macintosh screen situation,

including new relations and new objects : 99

5-6 A modi�ed algorithm to �nd attributes of objects and new objects. : : : : : 100

5-7 Matching perceptions with new relations and new objects : : : : : : : : : : 102

5-8 A screen situation where one window is below and to the left of another

active window : 105

5-9 An algorithm to test a general rule on every possible binding to speci�c

objects in the environment : 106

6-1 A graphical depiction of a typical sequential ratio test : : : : : : : : : : : : 117

6-2 A typical operating characteristic function of the sequential ratio test : : : 118

6-3 The typical shape of the average sample number of the sequential ratio test 118

8

List of Tables

1.1 Four Types of Environments : 17

6.1 Empirical comparison of FindExpert and SeqFindExpert with the uni-

form distribution : 123

6.2 Empirical comparison of FindExpert and SeqFindExpert with the normal

distribution : 124

6.3 Empirical Comparison of FindExpert and SeqFindExpert with fair coins 124

9

10

Chapter 1

Introduction

The twentieth century is full of science �ction dreams of robots. We have Asimov's Robot

series, Star Trek's Data, and HAL from \2001: A Space Odyssey". Recent Arti�cial Intelli-

gence research on autonomous agents made the dream of robots that interact with humans

in a human environment a goal. The current level of autonomous agent research is not

near the sophistication of science �ction robots, but any autonomous agent shares with

these robots the ability to perceive and interact with the environment. At the core of this

direction of research is the agent's self su�ciency and ability to perceive the environment

and to communicate with (or manipulate) the environment.

Machine learning researchers argue that a self su�cient agent in a human environment

must learn and adapt. The ability to learn is vital both because real environments are

constantly changing and because no programmer can account for every possible situation

when building an agent. The ultimate goal of learning research is to build machines that

learn to interact with their environments. This thesis is concerned with machines that learn

the e�ects of their actions on the environment | namely, that learn a world model.

Before diving into the speci�cs of the problem addressed in this thesis, let us imagine

the future of learning machines. In the following scenario, a robot training technician is

quali�ed to supervise learning robots. She describes working with a secretary robot that

has no world knowledge initially and learns to communicate and perform the tasks of a

secretary.

September 22, 2xxx

Dear Mom,

I just �nished training a desk-top secretary | one of the high-tech secretaries

that practically run a whole o�ce by themselves. It's hard to believe that in just

a week, a pile of metal can learn to be such a useful and resourceful tool. I think

you'll �nd the training process of this robot interesting.

The secretary robots are interesting because they learn how to do their job.

Unlike the simple communicator that you and I have, you don't have to input

all of the information the secretary robot needs (like addresses and telephone

numbers). Rather it learns the database as you use it. For example, if you want

to view someone whose location isn't in your database, the secretary would �nd

it and get him on view for you. It can also learn new procedures as opposed to

our hardwired communicators, which means that it improves and changes with

your needs. I can't wait until these things become cheap enough for home use.

The training begins by setting up the machine with the input and output

11

devices it will �nd in its intended o�ce, and letting the machine experiment

almost at random. I spent a whole day just making sure it doesn't cause any

major disasters by sending a bad message to an important computer. After a

day of mindless playing around the secretary understood the e�ects of its actions

well enough to move to the next training phase. It had to learn to speak �rst,

which it did adequately after connecting to the Language Acquisition Center for

a couple of hours. I believe learning language is so fast because the Language

Acquisition Center downloads much of the language database.

At this point my work began. I had to train the secretary's o�ce skills. I gave

it tasks to complete and reinforced good performance. If it was unsuccessful I

showed it how to do the task. At this stage in training the robot is also allowed to

ask for explanations, which I had to answer. This process is tedious because you

have to repeat tasks many times until the training is su�ciently ingrained. It

still doesn't perform perfectly, but the owners understand that she will continue

to improve.

The last phase of training is at the secretary's future work place. The sec-

retary's owner trains it in speci�c o�ce procedures, and it accumulates the

database for its o�ce.

I am anxiously awaiting my next assignment | a mobile robot...

Ruti

The secretary robot in the above scenario is di�erent from current machines (robots or

software applications) because it leaves the factory with a learning program (or programs)

but without world knowledge or task oriented knowledge. Current technology relies on pro-

gramming rather than learning. Machines leave the factory with nearly complete, hardwired

knowledge of their task and necessary aspects of their work environment. Any information

speci�c to the work-place must be given to the machine manually. For example, the user of

a fax program must enter fax numbers explicitly. Unlike the secretary robot, the program

cannot learn additional numbers by accessing a directory independently.

To date it is impossible and impractical to produce machines that learn, especially with

as little as the secretary robot has initially. Learning is preferable to pre-programming, even

at a low level, when every environment is di�erent, e.g. di�erent devices or a di�erent o�ce

layout for a mobile robot. Machine learning researchers hope that, due to better learning

programs and faster hardware, learning machines will be realistic in the future. This thesis

takes a small step toward developing such learning programs.

We examine the problem of an autonomous agent, such as the secretary robot, with no a

priori knowledge learning a world model of its environment. Previous approaches to learning

causal world models have concentrated on environments that are too \easy" (deterministic

�nite state machines) or too \hard" (containing much hidden state). We describe a new do-

main | environments with manifest causal structure | for learning. In such environments

the agent has an abundance of perceptions of its environment. Speci�cally, it perceives

almost all the relevant information it needs to understand the environment. Many environ-

ments of interest have manifest causal structure and we show that an agent can learn the

manifest aspects of these environments quickly using straightforward learning techniques.

This thesis presents a new algorithm to learn a rule-based causal world model from ob-

servations in the environment. The learning algorithm includes a low level rule-learning

algorithm that converges on a good set of speci�c rules, a concept learning algorithm that

learns concepts by �nding completely correlated perceptions, and an algorithm that learns

12

general rules. The remainder of this section elaborates on this learning problem, describes

unfamiliar terms, and introduces the framework for our solution.

The agents in this research, like the robot in the futuristic letter, are autonomous agents.

An autonomous agent perceives its environment directly and can take actions, such as move

an object or go to a place, which a�ect its environment directly. It acts autonomously based

on its own perceptions and goals, and makes use of what it knows or has learned about the

world. Although people may give the agent a high level goal, the agent possesses internal

goals and motivations, such as survival and avoiding negative reinforcement.

Any autonomous agent must perceive its environment and select and perform an action.

Optionally, it can plan a sequence of actions that achieve a goal, predict changes to the

environment, and learn from its observations or external rewards. These activities may be

emphasized or de-emphasized in di�erent situations. For example, if a robot is about to fall

o� a cli�, a long goal oriented planning step is superuous. The action selection, therefore,

uses a planning and decision making algorithm which relies heavily on world knowledge.

The agent can learn world knowledge from its observations, and from mistakes in predicting

e�ects of its actions. Learning increases or improves the agent's world knowledge, thus

improving all of the action selection, prediction, and planning procedures.

An autonomous agent must clearly have a great deal of knowledge about its environment.

It must be able to use this knowledge to reason about its environment, predict the e�ects

of its actions, select appropriate actions, and plan ahead to achieve goals. All the above

problems | prediction, action selection, planning, and learning | are open problems and

important areas of research. This thesis is concerned with how the agent learns world

knowledge, which we consider a �rst step to solving all the remaining problems.

As we see in the secretary robot training scenario, there are several stages in learning.

In the initial stage, the agent has little or no knowledge about the environment and it learns

a general world model. In later stages the agent already has some understanding of the

environment and it learns speci�c domain information and goal-oriented knowledge. This

thesis deals with the initial stages of learning, where the agent has no domain knowledge.

The agent uses the perceptual interface with its environment and a learning algorithm to

learn a world model of its environment.

The robot training scenario also indicates that there are several learning paradigms.

Initially, the agent learns by experimenting and observing. Subsequent learning stages

include learning from examples, reinforcement learning, explanation-based learning, and

apprenticeship learning. This thesis addresses autonomous learning, as in the early stages

of learning, from experiments and observations. In the autonomous learning paradigm, the

agent cannot use the help of a teacher. For example, in the early training of the secretary

robot, the trainer plays the role of a babysitter more than that of a teacher. The trainer

is available in case of an emergency; this is especially important for mobile robots that

can damage themselves. Rather than learn from a teacher, the agent learns through the

perceived e�ects of its own actions. It selects its actions independently; the goal of building

an accurate world model is its only motivation.

Because known learning algorithms are successful when the agent learns a simple envi-

ronment or begins with some knowledge of the environment, but the learning techniques

do not scale for complex domains, we examine a class of environments in which learning

is \easy" despite their complexity. These environments have manifest causal structure |

meaning that the causes for the e�ects sensed in the environment are generally percepti-

ble. In more common terms, there is little or no locally \hidden state" in the environment

| or rather in the sensory interface of the agent with the environment. Although many

13

environments have manifest causal structure, this class of environments in unexplored in

the machine learning literature. This thesis hypothesizes that environments with manifest

causal structure allow the agent to use simple learning techniques to create a causal model

of its environment, and presents, in support of this hypothesis, algorithms that learn a

world model in a reasonable length of time even for realistic problems.

In this thesis an autonomous agent \lives" in a complex environment with manifest

causal structure. The agent begins learning with no prior knowledge about the environment

and learns a causal model of its environment from direct interaction with the environment.

The goal of the work in this thesis is to develop learning algorithms that allow the agent to

successfully and e�ciently learn a world model of its environment.

The agent learns the world model in two phases. First it learns a set of rules that

describe the environment in the lowest possible terms of the agent's perceptions. Once the

perception-based model is adequate, the agent learns higher level concepts using the previ-

ously learned rules. Both the rule learning algorithm and the concept learning algorithms

are novel. The concept learning is especially exciting since previous learning research has

not been successful in learning general concepts in human readable form.

This thesis demonstrates the learning algorithms in the Macintosh Environment | a

simpli�ed version of the Macintosh user-interface. The Macintosh Environment is a complex

and realistic environment. Although the Macintosh user-interface is deterministic, an agent

perceiving the screen encounters some non-determinism (see Sections 1.4 and 2.2 for a

complete discussion). While the Macintosh Environment is complex and non-deterministic,

it has manifest causal structure and therefore is a suitable environment for this thesis. In

the Macintosh Environment, like the secretary robot scenario, the agent learns how the

environment (the Macintosh operating system) responds to its actions. This knowledge can

then be used to achieve goals in the environment.

The remainder of this chapter has two parts. The �rst part (comprised of Sections 1.1, 1.2,

and 1.3) discusses the motivation for this research. Section 1.1 discusses the manifest causal

structure property in detail and illustrates its usefulness and relation to human and animal

environments. Section 1.2 gives a brief overview of work on learning world models and

contrasts previous approaches to learning causal world models with the approach of this

thesis. Section 1.3 presents some of the large body of previous work in Arti�cial Intelligence

that uses causal world models to plan, predict, and reason.

The second part of this chapter (comprised of Sections 1.4 and 1.5) is more technical

and presents, without detail, the salient ideas of the thesis. Section 1.4 overviews the

Macintosh Environment in which the agent experiments and learns. Section 1.5 describes

the structure of the world model the agent learns, the methodology for learning the causal

rules that make up the world model, and the two concept-learning paradigms: collapsing

correlated perceptions and generalizing rules. For a complete discussion of the algorithms

mentioned in this chapter refer to the respective chapter for each topic.

1.1 Manifest Causal Structure

De�nition manifest: readily perceived by the senses and esp. by the sight.

synonyms: obvious, evident [Webster's dictionary]

This thesis addresses learning in environments with manifest causal structure. As the

name indicates, in such environments the agent can in general directly sense the causes for

any perceived changes in the environment. In particular, the agent can sense (almost all)

14

the information relevant to learning the e�ects of its actions on the environment.

The restriction of environment types to environments with manifest causal structure con-

trasts with research on learning in environments with hidden information, such as (Drescher

1989, Rivest & Schapire 1989, Rivest & Schapire 1990). The manifest causal structure of

the environment eliminates the need to search beyond the perceptions for causes to changes

in the environment. We claim that the strategies for learning the world model can there-

fore be fast and simple (compared with other techniques, such as the schema mechanism

(Drescher 1989)).

While the agent may need a great deal of sensory information to achieve the manifest

causal structure property, the sensory interface does not necessarily capture the complete

state of the environment. This direction of research is in contrast with much of the work

on autonomous agent learning, such as Q-learning (Sutton 1990, Sutton 1991, Watkins

1989), where states of the world are enumerated and the agent perceives the complete state

of the environment. For the manifest causal structure property, locally complete sensory

information usually su�ces since changes to the local environment can in most cases be

explained by the local information. For example, consider an environment with several

rooms. An agent in this environment needs to perceive only its local room not the state of

the other room in order to explain most perceived change to the environment.

This thesis draws an important distinction between the true environment in which the

agent lives and the environment as the agent perceives it. The true environment is the

environment the in which the agent lives, and it may be deterministic or non-deterministic.

Notice that a non-deterministic environment is not completely manifest, i.e. its causal

structure cannot be captured in all cases. For generality, environments with manifest causal

structure can exhibit some unpredictable events as long as they occur relatively rarely. The

environment, as the agent perceives it, is a product of the underlying environment and the

agent's perceptual interface. The perceptual interface can make the underlying environment

manifest or partially hidden. Typically the perceptual interface will map several underlying

world states to one perceptual state, thereby hiding some aspects of the environment. Such

environments have manifest causal structure if e�ects are predictable almost all the time.

The manifest causal structure property, therefore, is a property of the causal structure

of the environment together with the agent's perceptual interface. In simple environments

very little sensory data is su�cient to achieve manifest causal structure. For example,

consider a room with a single light and a light switch that can be in either on or o�

position, and an agent that is interested in predicting if the light is on or o�. One binary

sensor is su�cient to perceive the relevant aspect of the environment { light on/o�. In more

complex environments the sensory interface must be much more complicated. For example,

in the real world people and other animals have developed very e�ective sensory organs that

perceive the environment (such that they achieve the manifest causal structure property),

and they are able to understand the causal structure and react e�ectively.

I believe the restriction of the problem to environments with manifest causal structure is

a natural one. People, as well as other animals, do not cope well with environments that are

not manifest. In fact, it is so important to people that their environment be manifest that

they go a step beyond the perceptual abilities with which nature endowed them. People

build sensory enhancement tools such as microscopes to perceive cellular level environments,

night vision goggles for dark environments, telescopes for very large environments, and

particle accelerators for sub-atomic environments. Many agent-environment systems with

appropriate sensory interfaces, such as animals in the real world, have manifest causal

structure. In an arti�cial environment it is straightforward to give the agent su�cient

15

sensory data to achieve the manifest causal structure property.

While it is believable that software environments with a single agent can have manifest

causal structure, it is not clear that the notion of manifest causal structure generalizes to

more complex environments and real-world settings. One complication is the presence of

multiple actors in the environment. Very few environments are completely private. Even in

one's o�ce the phone may ring or someone could knock on the door. In some cases, such as

a private o�ce, occurrences due to other actors may be rare enough that the environment

is still predictable almost all the time. Often other actors are continually present and a�ect

one's environment. An environment with multiple actors can have manifest causal structure

if the agent can perceive the actions of other actors and predict the results of their actions.

Another complication in real-world environments is the abundance of perceptual stimuli.

An agent in an environment with manifest causal structure likewise has many perceptions.

The advantage of the large number of perceptions is that the causes of events are found

in the perceptions; the disadvantage is that the search space for the causes is large. In a

complex environment it is possible for the agent to perceive too much. That is, the agent

may perceive irrelevant information that makes the environment appear probabilistic or

even random, when a more focused set of perceptions would show a predictable relevant

subset of the environment.

People are very good at attending to relevant aspects of their environment. For example,

when I work alone in my o�ce I would immediately respond to a beep on my computer

(indicating new mail), but when I am in a meeting I do not seem to hear these beeps

at all. People are similarly good at recognizing when they do not perceive enough of the

environment, and extend their perceptions by turning on a light or using a magnifying glass,

for example. Such smart perceptual interfaces may be one way to achieve manifest causal

structure in complex environments.

In addition, hidden state can sometimes become manifest by extending the perceptual

interface with memory. For example, if there is a pile of papers on the desk it is impossible

to know which papers will be revealed by removing papers from the top of the pile. The

memory of creating the pile makes the hidden papers known. An agent can use the memory

of previous perceptions, like it uses current perceptions, to explain the e�ects of actions.

Currently, endowing machines in the real world (i.e., autonomous robots) with percep-

tion is very problematic. We do not have the technology to give robots the quality of

information that is necessary to achieve an environment with manifest causal structure.

Most of the sensors used in robotics are very low level and give only limited information.

The more complex sensors such as cameras give a large amount of information, but we do

not have e�cient ways to interpret this information. As a result, much of the environment

remains hidden. Thus, although I believe that if we were able to create a sensory inter-

face for robots that achieves the manifest causal structure property then the techniques for

learning and performing in the environment would be useful in robots, I do not expect these

techniques to be practical for any robots currently in use.

To summarize, many environments have manifest causal structure with careful selection

of the perceptual interface. The problem of determining the necessary perceptions in any

environment is di�cult and remains up to the agent designer. The following discussion

summarizes the possible environment types and under what conditions environments have

manifest causal structure. (In the remainder of this thesis environment refers to the agent's

perceived environment and underlying environment to the true environment.)

There are four types of underlying environment/perceptual interface combinations. Ta-

ble 1.1 shows the type of the perceived environment for each of the four combination types.

16

perceptual interface

underlying environment manifest interface hidden interface

deterministic 1. deterministic 2. probabilistic

non-deterministic 3. probabilistic 4. probabilistic

Table 1.1: Four Types of Environments

The environment can either be deterministic or probabilistic.

When the underlying environment is deterministic and the perceptual interface is man-

ifest, the environment is deterministic from the agent's perspective. The environment is

essentially a �nite automaton (assuming a �nite number of perceptions) and therefore it

has completely manifest causal structure. The three remaining environment types appear

probabilistic to the agent. In the second environment type there are probabilistic transitions

when two underlying states that collapse to one perceptual state have di�erent successor

states following an action. The e�ect of this action in the perceptual state appears to

probabilistically choose one of the two e�ects from the underlying states. In the third en-

vironment type, the probabilistic e�ects are due to the underlying environment, and the

fourth environment type is probabilistic for both of the above reasons.

We say that probabilistic environments have manifest causal structure if the degree of

non-determinism is small. The degree of non-determinism of the environment can be any-

where from 0 (deterministic environment) to 1 (random environment). (The degree of non-

determinism of an environment is not always well-de�ned | see Chapter 3 for an extended

discussion of this issue.) Although our intuition tells us that environments with manifest

causal structure should have a small amount of non-determinism (e.g., unpredictable events

occur with probability at most :2), we do not impose a bound on the uncertainty of the

environment. Rather the learning algorithm uses the known degree of non-determinism of

the environment (1��). The algorithm learns only causal relation in the environment that

are true with probability �. As the degree of non-determinism increases, the correctness of

the world model decreases.

Although it seems intuitive that environments with manifest causal structure should be

easy to learn, since all the relevant information is available, the idea has not been explored

by researchers. Figure 1-1 compares the domain of environments with manifest causal

structure with environments explored by other machine learning researchers. The graph

compares these environments on two aspects: the degree of uncertainty and the amount of

hidden state in the environment. First note that it is impossible and not interesting to learn

in environments with a high degree of uncertainty or with a large amount of uncertainty.

Therefore, most of the research activity is concentrated in a small section of the graph.

Environments with manifest causal structure are represented by the shaded region. Such

environments allow a restricted amount of hidden state and uncertainty.

Much of the research on learning is concerned with deterministic environments with no

hidden state (Angluin 1987, Shen 1993). These learning algorithms cannot learn models of

environments with any uncertainty, so they are not applicable to learning in environments

with manifest causal structure which permit some uncertainty. Reinforcement learning

research, such as Q-learning (Watkins 1989, Sutton 1990, Sutton 1991), can cope with some

uncertainty but assume complete state information which is not guaranteed in environments

with manifest causal structure. Rivest & Schapire (1990) and Drescher (1989) explore

17

no hidden state completely hidden
 state

Drescher 89

Rivest & Schapire 90Angluin 87

 Watkins 89

Shen 93

 environments with
manifest causal structure

deterministic

random

uncertainty in the
environment

hidden state
in the environment

Figure 1-1: A comparison of the domain of environments with manifest causal structure

with environments explored by other machine learning research.

environments with a fair amount of hidden state. The learning algorithm developed by

Rivest & Schapire (1990) is not applicable to environments with manifest causal structure

since it assumes that the underlying environment is deterministic. Dean, Angluin, Basye,

Engelson, Kaelbling, Kokkevis & Maron (1992) (not in Figure 1-1) use a deterministic

environment with some sensory noise which similarly is more restrictive than environments

with manifest causal structure. The schema mechanism (Drescher 1989) is applicable in

environments with manifest causal structure, but the learning technique is slow.

The restriction of the learning problem to environments with manifest causal structure

does not trivialize the problem. The inherent di�culties of learning (such as the need

for many trials, the large search space, the problem of representing and using the learned

information) remain, but the learning strategies do not have to be smart about inventing

causes, only about grasping what is perceived.

This thesis shows that in environments with manifest causal structure the agent learns

e�ciently using straightforward strategies. The learning techniques are simple to implement

and e�cient in practice, and the techniques should extend to environments which are more

complex than the kinds of environments dealt with in past research.

1.2 Learning World Models

Autonomous agents typically learn one of two types of world models. The �rst is a mapping

from states of the world (or sets of sensations) to actions (formally S ! A). The second

is a mapping from states and actions to states (formally S � A ! S). We call the �rst

mapping a goal-directed world model, since it prescribes what action to take with respect to

an assumed goal, and the second a causal world model, since it indicates the resulting state

when taking an action in a given state.

There are several known techniques for learning a goal-directed world model. Among

these are reinforcement learning algorithms such as genetic algorithms and the bucket

brigade algorithm (Holland 1985, Wilson 1986, Booker 1988), temporal di�erencing tech-

niques (Sutton & Barto 1987, Sutton & Barto 1989), interval estimation (Kaelbling 1990),

Q-learning (Watkins 1989, Sutton 1990), and variants of Q-learning (Sutton 1991, Mataric

18

1994, Jaakkola, Jordan & Singh 1994). These techniques are useful for some applications

but do not scale well and su�er from the following common limitation. Since the agent

learns a goal directed world model it throws away a great deal of the information it per-

ceives and keeps only information that is relevant to its goal. If the agent's goal changes it

has to throw away all its knowledge and re-learn its environment with this new perspective.

For example, suppose a secretary robot needs to contact a client. It quickly learns a

goal directed model which prescribes the proper sequence of digits to dial on the telephone.

Six months later the client moves to a new location with a new telephone number. The

secretary is unable to contact the client using its current model. It now has a new goal

(dialing the new number sequence) and it must re-learn the entire procedure for contacting

the client. If the secretary learns a causal world model, then it spends some time making

the right plan each time it calls the client. When the client's number changes, however,

it still knows that the proper tool for communication is the telephone and it learns only

the new number. Thus following a change in the environment, the secretary can patch a

causal world model, but if it uses a goal-directed world model it must learn a completely

new model.

The advantage of a causal world model is that it stores more information about how the

environment behaves. Therefore a local change in the environment forces small adjustments

in the model, but does not require learning a new model. In addition the causal knowledge

can be used to reason about the environment, and, speci�cally, to predict the outcome of

actions.

The disadvantage of a causal world model is that the abundance of information leads to

slower planning, predicting, and learning in such models compared with these operations

in goal-directed world models. For example, using a causal world model to plan requires

planning, which is a long operation, for every goal (even goals that have been achieved

previously). However, regenerating plans for a goal can be avoided by chunking plans (Laird,

Newell & Rosenbloom 1978). Saving previous plans by chunking increases the e�ciency of

using causal world models.

This thesis concentrates on learning a causal world model because in the initial stages

of learning the agent learns general domain knowledge that is relevant to many tasks. A

goal directed world model is more appropriate for learning to perform speci�c tasks.

We are interested in e�cient learning of causal world models. To date, causal world

models have been e�ciently learned for very restricted environments such as �nite automata

(Angluin 1987, Rivest & Schapire 1989, Rivest & Schapire 1990, Dean et al. 1992, Shen 1993)

or with some prior information as in learning behavior networks (Maes 1991). Attempts to

learn a causal model of more complex environments with no prior information, such as the

schema mechanism (see Drescher (1989), Drescher (1991), and Ramstad (1992)) have not

resulted in e�cient learning. The algorithms this thesis presents lead to e�cient learning

for more types of environments.

1.3 Using Causal World Models

Although this thesis concentrates on the problem of learning causal models, it is important

to note that there is a large body of work in AI using causal models for planning, predicting,

and causal reasoning.

Planning research is concerned with using a causal world model to �nd a sequence of

actions that will reach a goal state (see strips (Fikes & Nilsson 1971) and gps (Newell,

19

Shaw & Simon 1957)). The main issues in planning are the e�ciency of the search, and

robustness of the plans to failing actions, noise, or unexpected environmental conditions

(see Kaelbling (1987), Dean, Kaelbling, Kirman & Nicholson (1993), and George� & Lansky

(1987) for discussion on reactive planning). With the exception of unexpected environmental

conditions, which are rare in environments with manifest causal structure, these planning

issues are important for an agent using the world model learned in this thesis.

Causal reasoning paradigms solve prediction and backward projection problems. Pre-

diction problems are: \given a causal model and an initial state, what will be the �nal

state following a given sequence of actions?" Backward projection problem are: \given

a causal model, an initial state, and a �nal state, what actions and intermediate states

occurred?". Much of the research toward causal reasoning systems involves de�ning a

su�ciently expressive logical formalism to represent causal reasoning problems (see, e.g.,

(Shoham 1986, Shoham 1987, Allen 1984, McDermott 1982)). Shoham (1986) presents the

logic of chronological ignorance which contains causal rules that are closely related to the

representation of the world model in this thesis.

Early work on causal reasoning uncovered the frame problem: knowing the starting state

and action does not necessarily mean that we know everything that is true in the resulting

state. A simple solution to the frame problem is to assume that any condition that is

not explicitly changed by the action remains the same. This simple solution is inadequate

when there is incomplete information about the state or actions. For example, Hanks &

McDermott (1987) propose the Yale shooting problem where a person is alive and holds a

loaded gun at time 1, he shoots the gun at time 2, and the question is if he is alive following

the shooting. Two solutions exist for this problem. The �rst solution is the natural solution

where the person shot is not alive, and in the second solution the gun is unloaded prior to

shooting and the person remains alive. There are many approaches to solving this problem

in the nonmonotonic reasoning literature (among them Stein & Morgenstern (1991), Hanks

& McDermott (1985), and Baker & Ginsberg (1989)).

In an environment with manifest causal structure an agent is typically concerned with

prediction problems not with backward projection problems, since it perceives relevant past

conditions. (Such relevant past conditions are rarely not present.) The agent also perceives

all the actions that take place in the environment, so prediction is straightforward given

an accurate world model. For example, in the Yale shooting problem it is not possible for

the unload action to take place without observing this action, so the only feasible solution

is the correct one | that the person shot is not alive. Thus, due to the restriction of the

environment type, the learning and prediction algorithms in this thesis use the assumption

that conditions remain unchanged unless a change is explicit in some rule.

At this point we have discussed, at length, the problem that this thesis addresses. We

will now introduce a speci�c environment, in which the agent in this thesis learns, and the

approach this thesis takes to solve the problem of learning a world model in an environment

with manifest causal structure.

1.4 The Macintosh Environment

This thesis uses the Macintosh Environment, which is a restricted version of the Macintosh

user-interface, to explore principles of e�cient autonomous learning in an environment with

manifest causal structure. In the Macintosh Environment the agent \observes" the screen

of an Apple Macintosh computer (e.g., see Figure 1-2) and learns the Macintosh user-

20

interface | i.e., how it can manipulate objects on the screen through actions. This learning

problem is realistic; many people have learned the Macintosh interface, which makes this

task an interesting machine learning problem. The Macintosh user-interface has had great

success because it is manifest and therefore easy to use. The Macintosh Environment ful�lls

the requirements for this thesis since it is a complex environment with a manifest causal

structure.

Learning the Macintosh user-interface is more challenging for an agent with no prior

knowledge than for people because people are told much of what they need to know and

do not learn tabula rasa. Many people �nd the structure of windows natural because it

simulates papers on a desk. Bringing a window to the front has the same e�ect as moving

a paper from a pile to the top of the pile and so on. The learning agent in this thesis

has no such prior knowledge. Furthermore, when people learn to work on a computer they

typically have a user manual or tutor to tell them the tricks of the trade and the meaning of

speci�c symbols. By contrast, the agent learns the meaning (and function) of the symbols

and boxes on the screen, as well as how windows interact, strictly through experimentation.

Learning the Macintosh Environment suggests the possibility of machines learning the

operation of complex computer systems. Although a very general application of the learning

algorithm, such as the secretary robot, is overly ambitious at this time, some applications

seem realistic. For example, there has been considerable interest in interface agents recently

(Maes & Kozierok 1993, Sheth & Maes 1993, Lieberman 1993). Research on interface agents

to date concentrates on agents that assist the user of computer software or networking

software. The interface agents learn procedures that the user follows frequently, and repeats

these procedures automatically or on demand. In this way the agent takes over some tedious

tasks, such as �nding an interesting node on the network.

The learning agent in this thesis can be part of a \smarter" interface agent. The smarter

agent can learn about the software environment, and can use this knowledge to act as a

tutor or advisor to a user. The agent can spend time learning about the environment in

\screensaver" mode, where the agent uses the environment at those intervals when a screen-

saver would run. It then uses the learned model to answer the user's question about the

software environment. The implementation of such an application is outside the scope of

this thesis, but it is an interesting direction for future research.

In the Macintosh Environment, the agent can manipulate the objects on the screen with

click-in object actions (other natural actions for this environment, double click and drag,

will not be implemented in this thesis.) The actions a�ect the screen in the usual way (see

Section 2.2 for a summary of the e�ects of action in the Macintosh Environment). Notice

that although time is continuous in this environment, it can be discretized based on when

actions are completed.

The agent's perceptions of the Macintosh Environment can be simulated in several

ways. People view the screen of a Macintosh as a continuous area where objects (lines,

windows, text) can be in any position. Of course, the screen is not continuous: it is made

up of a �nite number of pixels. The agent could perceive the value of each pixel as a

primitive sensation, but this scheme is not a practical representation for learning high level

concepts. For this thesis the screen is represented as a set of rectangular objects with

properties and relationships among them. (The perceptual representation is presented in

full in Section 2.3.)

The agent, in the Macintosh Environment, learns how its actions a�ect its perceptions

of the screen. Before we discuss the methodology for learning, consider what the agent

should learn in the Macintosh Environment. Figure 1-2 shows two screen situations from

21

Figure 1-2: Macintosh screen situations before and after a click in Window 1

22

the Macintosh Environment. In the �rst one Window 2 is active and overlaps Window 1,

and the second situation shows that following a click in Window 1, Window 1 is active and

overlaps Window 2.

This example demonstrates two important facts:

� a click in a window makes that window active, and

� if a window is under another window, then clicking it brings it in front of the other

window.

We set these rules as sample goals for the learning algorithm. By the end of this thesis we

will show how the algorithm learns these rules and other rules of similar complexity.

1.5 Learning the World Model

This section describes the representation of the world model and the approach of the learning

algorithms.

1.5.1 The Agent's World Model

Recall that this thesis develops an algorithm for learning a causal world model e�ciently for

environments with manifest causal structure. The structure of the world model is based on

schemas from the schema mechanism (Drescher 1989), although we refer to them as rules.

As in the schema mechanism, the world model is a collection of rules which describe the

e�ects of actions on perceptual conditions. We write rules as follows:

precondition ! action ! postcondition

where the precondition and postcondition are conjunctions of the perceptual conditions of

the environment, and higher level concepts that the agent learns.

A rule describes the e�ects of the action on the environment. It indicates that if the pre-

condition is currently true in the environment, then if the action is taken, the postcondition

will be true. Notice that the rules in this model are not production rules, which suggest

taking the action, or strips operators (Fikes & Nilsson 1971), which add or remove condi-

tions in the environment. Rather, rules remember a causal relationship that is true for the

environment, and taken as a set they form a causal world model that is goal independent.

Once the agent learns a reliable set of rules it can use the world model to predict and

plan. Known algorithms such as gps (Newell et al. 1957) and strips (Fikes & Nilsson 1971)

can be adapted to plan and predict using these causal rules.

In Section 1.4 we discussed two rules we want the learning algorithm to learn. Now that

we selected the representation for the world knowledge, we can describe the rules in more

detail within the representation of rules. The �rst rule \a click in a window makes that

window active" becomes

() ! click-in Windowx ! Windowx is active

where () means an empty conjunction of preconditions. (This rule has the implied precon-

dition that Windowx is present because one cannot click in a window that is not on the

screen.) The second rule \f a window is under another window, then clicking it brings it in

front of the other window" becomes

23

Windowy overlaps Windowx ! click-in Windowx ! Windowx overlaps Windowy.

The description of these rules is high level and uses concepts, such as active that are

unknown to the agent initially. The rule that the agent learns will be expressed in terms of

its perceptions of the screen, and in terms of higher level concepts when the agent learns

such concepts. A discussion on learning concepts follows in Section 1.5.3. For the time being

we will discuss the Macintosh Environment with high level descriptions, and we can assume

that some set of perceptual conditions captures the description. A complete description of

the perceptual interface is given in Chapter 2.

The next two sections discuss the algorithms that learn the above rules. Like a child, the

agent in this thesis learns speci�c low-level knowledge �rst, then builds on this knowledge

with more advanced learning. Thus, the approach of this thesis uses two phases of learning.

In the �rst phase, the rule-learning algorithm learns speci�c rules whose pre- and post-

conditions are direct perceptions. A second learning phase uses the speci�c rules learned

by the �rst phase to learn general rules with higher-level concepts.

1.5.2 Learning Rules

This section discusses an algorithm for learning rules about speci�c objects. In the example

situation in Figure 1-2, where Window 1 becomes active following a click in Window 1, the

rule-learning algorithm learns rules such as

() ! click-in Window 1 ! Window 1 is present

() ! click-in Window 1 ! Window 1's active-title-bar is present

and

Window 2 overlaps Window1

! click-in Window 1 ! Window 1 overlaps Window 2.

The algorithm in this section learns such speci�c rules from observing the e�ects of actions

on the environment. This algorithm performs the �rst phase of learning.

Our autonomous agent repeats the following basic behavior cycle:

Algorithm 1 Agent

repeat forever

save current perceptions

select and perform the next action

predict

perceive

learn

The remainder of this section discusses the learning step of this cycle. The learning step

executes at every cycle (trial), and at every trial the learning algorithm has access to the

current action and the current and previous perceptions. The algorithm uses the observed

di�erences between the current and previous states of the environment to learn the e�ects

of the action. The learning algorithm in this thesis does not use prediction mistakes to

learn, but uses prediction to evaluate the correctness of the world model.

The rule learning algorithm for the Macintosh Environment begins with an empty set of

rules (no prior knowledge). After every action the agent takes, it proposes new rules for all

24

the unexpected events due to this action. Unexpected events are perceptions whose value

changed inexplicably following the action. At each time-step the learning algorithm also

evaluates the current set of rules, and removes \bad" rules, i.e., rules that do not predict

reliably.

The main points of the rule learning algorithm are discussed below.

Creating new rules The procedure for creating new rules has as input the following: (1)

the postcondition, i.e. an observation to explain, (2) the last action the agent took,

and (3) the complete list of perceptions before the action was taken.

The key observation in simplifying the rule learning algorithm is that because the

environment has a manifest causal structure, the preconditions su�cient to explain the

postcondition are present among the conditions at the previous time-step. The task

of this procedure is to isolate the right preconditions from the previous perceptions

list. The baseline procedure for selecting preconditions picks perceptions at random.

Because of the complexity of the Macintosh environment there are many perceptions.

Therefore, it is worthwhile to use some heuristics which trim the space of possible

preconditions. (The heuristics are general, not problem-speci�c, and are described in

Chapter 3.)

Separating the good rules from the bad After generating a large number of candidate

rules the agent has to save the \good" rules and remove the \bad" ones. Suppose

the environment the agent learns is completely deterministic. The perceptions in the

current state are su�cient to determine the e�ects of any actions and there are no

surprises. In such environments there is a set of perfect rules that never fail to predict

correctly. Distinguishing good rules from bad ones is easy under these circumstances:

as soon as a rule fails to predict correctly the agent can remove it.

Unfortunately the class of deterministic environments is too restrictive. Most envi-

ronments of interest do not have completely manifest causal structure. For example,

in the Macintosh Environment one window can cover another window completely, and

if the top window is closed the hidden window is surprisingly visible. To cope with a

small degree of surprise the rule reliability measure must be probabilistic.

The di�culty in distinguishing between good and bad probabilistic rules is that at

any time the rule has some estimated reliability from its evaluation in the world.

The agent must decide if the rule is good or bad based on this estimate rather than

the true reliability of the rule. This problem is common in statistical testing, and

several \goodness" tests are known. The rule-learning algorithm in this thesis uses

the sequential ratio test (Wald 1947) to decide if a rule is good or bad.

Mysteries In most environments some situations occur rarely. The algorithm uses \mys-

teries" to learn about rare situations. The agent remembers rare situations (with sur-

prising e�ects) as mysteries, and then \re-plays" the mysteries, i.e., repeatedly tries

to explain these situations. Using mysteries the algorithm for creating rules executes

more often on these rare events. Therefore, the rules explaining the events are created

earlier. Mysteries are similar to the world model component of the Dyna architecture

(Sutton 1991), which the agent can use to improve its goal directed model.

For the complete algorithm see Chapter 3. Chapter 3 also contains the results of learning

rules in the Macintosh environment, and shows that the rule learning algorithm converges

to a good model of the environment.

25

1.5.3 Learning New Concepts

The rules learned by the algorithms in the previous section are quite di�erent from the rules

we discussed as goals in Section 1.5. The di�erences are that (1) these rules refer to speci�c

objects, such as Window 1, rather than general objects, such as Windowx, and (2) these

rules do not use high-level concepts, such as active, as pre- and post-conditions | only

perceptions are used. This section describes the concept-learning algorithms that bridge

the gap between the speci�c rules learned by the rule-learning algorithm and our goal rules.

We discuss two concept-learning algorithms, which �nd correlated perceptions and general

rules.

Correlating perceptions is a type of concept learning which addresses the problem of

redundant rules and �nding the cause of an e�ect. For example, in the screen situation of

Figure 1-3, Window 1 disappears and Window 2 becomes active. There is a simple rule to

explain that Window 1 disappears:

() ! click-in Window 1 close-box ! Window 1 is not visible.

(No preconditions are needed since clicking in Window 1's close-box implies that the close-

box exists which implies that Window 1 is active.) Many rules explain why Window 2

became active, among them the following:

Window 2 is visible ! click-in Window 1 close-box ! Window 2 is active

Window 2 interior is visible ! click-in Window 1 close-box ! Window 2 is active

Window 2 title-bar is visible ! click-in Window 1 close-box ! Window 2 is active.

Clearly most of these rules are redundant since whenever Window 2 is visible and not active

it has an interior and a title-bar, etc. Pearl & Verma (1991) makes the distinction between

correlated conditions, such as the second and third rules above, and true causality, such as

the �rst rule. (Note that the above rules are only true when Window 1 and Window 2 are

the only windows on the screen. The examples throughout this thesis use situations with

these two windows, and Chapter 3 discusses learning with additional windows.)

The algorithm to �nd correlated perceptions relies on the observation that some per-

ceptions always occur together. To learn which perceptions are correlated the agent �rst

learns rules such as

precondition ! noaction ! postcondition

when no action is taken. These rules mean that when the precondition is true the postcon-

dition is also true in the same state. Notice that a set of noaction rules de�nes a graph

in the space of perceptions. The agent �nds correlated perceptions by looking for strongly

connected components in this graph. A new concept is a component in the graph, i.e. a

shorthand for the perceptions that co-occur.

The second type of concept learning addresses the problem of rules that are speci�c

to particular instances in the environment. For example, consider a room with three light

switches. The agent learns rules that explain how each of the light switches works, but when

the agent moves to a di�erent room with di�erent light switches it has to learn how these

light switches work. Instead, the agent should learn that there is a concept light switch and

some rules that apply to all light switches. Similarly in the Macintosh Environment, there

is a concept window and rules that apply to all windows.

26

Figure 1-3: Macintosh screen before and after a click in Window 1 close-box

27

The agent learns general concepts by �nding similar rules and generalizing over the

objects in those rules. When it generalizes over objects it adds the attributes of the objects

to the preconditions of the general rule. For example consider the rules

() ! click-in Window 1 close-box ! Window 1 is not visible

() ! click-in Window 2 close-box ! Window 2 is not visible.

These rules are similar and indicate that the objects Window 1 close-box and Window 2

close-box should be generalized. The agent adds as precondition the attributes that the

general object is a close-box and that this new object is part of the generalized window

object. The generalized rule becomes

objectx is an active window ^ objecty is a close-box ^ objecty is part of objectx ! click-in

objecty ! objectx is not visible.

See Chapter 5 for the complete algorithm for generalizing rules.

1.5.4 Evaluating the World Model

To examine the e�ectiveness of the learning algorithm we need to evaluate how good the

model is. There are three ways of evaluating a world model: to compare it with a correct

model, to test it as a predictor, or to use it as a basis for planning. This section examines

the plausibility of each method of evaluation in turn.

The �rst form of evaluation is to compare the learned model with a correct model. In

this form of evaluation the set of learned rules is compared with a set of a priori known rules

and the evaluation returns the percentage of correct rules the agent learned. This method

su�ers from two drawbacks: (1) it assumes that a single correct model exists, and (2)

someone (I) must encode the correct model manually. In many environments any number

of non-identical world models are equally good, and the number of rules in a world model

often prohibits manually coding the model. Thus, in this thesis, the world model is not

compared with the \right" model. Rather, we examine examples of learned rules.

The second form of model evaluation is to predict the next state of the world given the

current state and an action. This thesis primarily uses this method of evaluation. The

prediction algorithm predicts postconditions from all the applicable rules, and assumes no

change as a default when no rules apply (as discussed in Section 1.3).

The �nal form of model evaluation is to test the agent's ability to achieve a goal. This

algorithm uses a backward chaining search to �nd action sequences that achieve goals. The

planning algorithm is simplistic and not e�cient enough for general use, but it is su�cient

to demonstrate that the world model has the knowledge to achieve the goal.

1.6 Overview

The remainder of this thesis contains an extended discussion of the algorithms mentioned

in this chapter with results from experiments in the Macintosh Environment. Chapter 2

discusses the Macintosh Environment and how the agent perceives the Macintosh screen. We

present the rule-learning algorithm in complete detail in Chapter 3, along with a proof that

in environments with manifest causal structure this algorithm converges to a correct world

model. Chapters 4 and 5 contain the two concept learning algorithms: �nding correlated

perceptions and generalizing rules.

28

In addition, this thesis presents results on picking a good expert from a sequence in

Chapter 6. This direction of research is tangentially related to the research on learning

world models. It stems from the work on deciding if rules are good. In this research, we can

examine experts (for example the experts may be rules) one at a time and we want to discard

bad experts and keep the best one (i.e., the expert that makes fewest mistakes). Much like

rule learning the experts come from an unknown distribution and their error probability is

unknown. Unlike rules, whose \goodness" is determined by a known parameter, we cannot

assume how good the best experts are. Chapter 6 presents an algorithm that �nds an

expert that is almost as good as the best expert we would expect to �nd if the experts error

probabilities were known, given the same length of time.

29

30

Chapter 2

The Perceptual Interface

One of the main problems of Arti�cial Intelligence is knowledge representation: how to

represent world knowledge in a complete and useful manner. This thesis encounters the

knowledge representation problem at two levels. The �rst is the representation of the

agent's perceptions of its world, and the second is the representation of the knowledge the

agent learns. The representation of the learned world model is discussed in Chapter 3. This

chapter presents the representation of the agent's perceptions.

An appropriate representation of any problem is a crucial step toward its solution.

The \right" representation can make a di�cult environment learnable, whereas the wrong

representation can make the environment either too hard or trivial. In many cases a low-level

representation creates a large search space, which prohibits e�ective learning algorithms. On

the other hand, a representation can contain the di�cult aspects of a complex environment

reducing it to a trivial learning problem. In �nding a representation for the perceptions of

the agent, we must avoid both representations that are too low level and ones that are too

high level. People's perceptions are a good guideline for appropriate representation | in

particular perceptions of people who are not familiar with a given situation.

This thesis uses the Macintosh Environment as an example environment. In the Mac-

intosh Environment the agent learns the Macintosh user-interface. That is, the e�ects of

manipulating the screen of a Macintosh computer with clicking actions on windows and

other objects on the screen. To learn in the Macintosh Environment the agent must per-

ceive the screen of the Macintosh. This chapter develops a perceptual interface for the

Macintosh Environment that follows the guideline for appropriate representations based

on a layman's perceptions. For the Macintosh Environment these guidelines translate to

the way a person who has never used a window interface perceives the screen, or even the

way a young child perceives the screen. Such people may view the screen as a collection

of rectangular objects with properties (such as the shape of the icons in the rectangles).

Furthermore, the rectangular objects interact with one another by overlapping, being next

to or above each other, etc. The perceptual representation in this chapter expresses these

ideas in detail.

While the Macintosh Environment helps us to understand the representation problem

in detail, we must remember that we are seeking a general representation. The learning

algorithm this thesis develops is intended to be general enough to learn in a wide range of

environments, with the Macintosh Environment merely serving as an example. Thus the

perceptual representation must be su�ciently powerful to represent many problems.

With these issues in mind this thesis develops a general representation using mathematical-

31

like relations on objects described in Section 2.1. Section 2.3 contains a lengthy discussion

of the Macintosh Environment and the speci�c breakdown of the Macintosh screen into

objects and relations.

2.1 Mathematical Relations as Perceptions

The representation of perceptions is a general mathematical formulation. The agent per-

ceives objects and relations on objects. Each perception of the world is a relation on

objects and the associated value | denoted as

R(o1; : : : ; on) = v

where R is a relation on n arguments, o1; : : : ; on are perceived objects, and v is the value

of R on arguments o1; : : : ; on. Note that this representation is more general than standard

mathematical relations, where v can only be true or false. We assume, however, that the

set of possible values for any relation is �nite.

A great deal of research in AI has used a symbolic representation that is similar to

the relation representation. For example, in the traditional blocks world environment all

conditions in the world are expressed as CONDITION(o1 : : :on), such as ON(A;B) mean-

ing that block A is on top of block B. This condition is easily translated to the relation

representation as ON(A;B) = T and, in general, conditions can be translated to binary

relations. Unlike the traditional condition representation, the relation representation is use-

ful for describing multi-valued conditions, such as the color of a block, or even real-valued

conditions, such as the distance relation.

As required, the relation representation is general enough to describe a wide range of

environments. A learning algorithm using this representation can therefore learn in a va-

riety of environments with no change to the algorithm. Furthermore, the generality of the

representation permits the learning algorithm to be uniform in treating the knowledge it

amasses. For example, the algorithm can learn information beyond its immediate percep-

tions by creating new relations and new objects or generalizing relations over objects (e.g.

8oR(o) = v). Chapters 4 and 5 contain implementations of such advanced learning.

2.2 The Macintosh Environment

Before we examine, in detail, the perceptions of the Macintosh Environment, let us expand

our discussion of the Macintosh Environment. Recall that the Macintosh Environment is a

restricted version of the Macintosh user-interface. The agent in the Macintosh Environment

observes the screen of a Macintosh computer and takes actions that a�ect the screen. The

e�ects of the agent's actions on the screen objects are the same as the responses of the

Macintosh user-interface to a user taking these actions. Section 2.2.1 describes the \laws

of nature" for the Macintosh Environment. We discuss some important characteristics of

the Macintosh Environment in Section 2.2.2 and Section 2.2.3 gives the historical reasons

for selecting the Macintosh Environment for this research. The last section (Section 2.3)

presents the perceptual interface of the Macintosh Environment in full detail.

32

Figure 2-1: A description of a Macintosh screen situation

2.2.1 The \Laws of Nature" in the Macintosh Environment

When the agent takes an action in the Macintosh Environment, the action (event) is han-

dled by the Macintosh operating system. Thus the e�ects of actions in the Macintosh

Environment are exactly the same e�ects that actions have in the Macintosh user-interface.

This section describes the aspects of the Macintosh user-interface that are used in the Mac-

intosh Environment. (For a complete description of the Macintosh user-interface see The

Macintosh User's Guide.)

The key objects of the Macintosh user-interface are windows. In the screen situation

of Figure 2-1 there are two windows. Window 1 is active, and Window 2, whose title is

hidden, is not active. At any time only one window is active. All windows have a title-bar

and an interior where text and other information may appears. An active window has an

active-title-bar, a close-box, a zoom-box, and a grow-box. These features have recognizable

icons, such as the lines in the active-title-bar.

Clicking in any visible portion of an inactive window brings that window to the front

and makes it the active window (for example, see Figure 2-2). A click in the active window

causes no change, i.e., the active window remains active, unless the click occured in the close-

box, the zoom-box, or an icon in the window interior. A click in the close-box of the active

window closes that window. The window goes away and the window immediately under

the active window becomes the new active window. (The Macintosh interface maintains an

ordering of window layers at all times.)

33

A click in the zoom-box of the active window toggles the size of the window between its

initial size and the biggest possible size that takes up the whole screen. (The two window

sizes that the zoom-box toggles can be changed by re-sizing the window, but this feature is

not used in the Macintosh Environment.)

The active-title-bar and the grow-box of an active window are important features for

drag actions. Drag actions can re-size and move the active window, but these actions are

not used in the Macintosh Environment.

The Macintosh Environment also uses buttons, such as the button labeled Window 2

in Figure 2-1. Buttons in the active window are activated by a click action. In an inactive

window, a click in the location of a button, like a click anywhere in the window, makes

that window active. In the Macintosh Environment all the buttons have labels, such as

Window 2, indicating that they open the corresponding window. The window opened by

the button becomes active.

2.2.2 Characteristics of the Macintosh Environment

The behavior of the Macintosh Environment, as we saw in the previous section, is directly

controlled by the Macintosh user-interface. Since the Macintosh user-interface is a determin-

istic �nite state machine, so is the Macintosh Environment. The Macintosh Environment,

however, only appears deterministic if the observer has access to all the knowledge that the

Macintosh operating system has. If the observer, like a person, can only perceive what is

visible on the screen then some apparent non-determinism arises.

For example, consider the situation where there is one large window visible on the screen.

Typically, when the agent closes this window we expect that only the background will be

visible. It is possible, however, that a smaller window is completely obscured by the top

window. After closing the top window the hidden window will be visible. The appearance of

the small window cannot be predicted by the perceptions of the previous state. Therefore,

the event following closing the top window (background is visible only vs. a small window is

visible) appears to occur probabilistically. The above example and a few similar situations

make the Macintosh Environment, with a perceptual interface that includes only the cur-

rent perceptions, a probabilistic environment. The environment/perceptual interface type

of the Macintosh Environment is a deterministic underlying environment and a (slightly)

hidden perceptual interface. The Macintosh Environment has manifest causal structure

since unpredictable events, such as the above example, rarely occur.

It would be straightforward to incorporate memory in addition to direct perceptions, so

that the Macintosh Environment will remain deterministic. For example, if a small window

is hidden because of a click in another window, the agent can save the memory of the

small window. When closing the large window the agent can predict the appearance of the

small window using this memory. In this thesis, however, memory is not implemented. For

our purposes, the fact that unpredictable events occur rarely so that the environment has

manifest causal structure su�ces.

An important characteristic of the Macintosh Environment is that the learner is the

only actor a�ecting the environment. In addition, this environment has discrete time and

space. Time is actually continuous in the Macintosh Environment, but since the learner is

the only actor in the environment, we can consider discrete times between one action and

the next. Space is, of course, discrete because of the �nite number of pixels making up the

screen of the computer.

These characteristics will a�ect some of the strategies of the learning algorithm. In

34

particular, the learning algorithms use the assumption that the environment has manifest

causal structure which implies that the causes for any change to the screen are visible in

the previous screen situation.

2.2.3 Why the Macintosh Environment? | A Historical Note

When this research began many of the decisions for the direction of research were inuenced

by earlier autonomous learning research. At a high level, the problem that this thesis

addresses was selected because previous research deals with deterministic environments

or environments with a great deal of hidden state. The class of environments this thesis

explores | environments with manifest causal structure | seems a valuable, unexplored

direction for research.

At the lower level of selecting an example environment to demonstrate the results of

this research, it seemed reasonable to use an environment that is similar to environments

machine learning researchers typically use. Most research on autonomous learning is demon-

strated on arti�cial (simulated) grid environments (see (Drescher 1989, Booker 1988, Wilson

1986, Sutton 1991) for some examples). These simulated grid environments capture some

(though certainly not all) aspects of real-world environments, such as o�ce buildings or

factory oors. Furthermore, they are simple to implement and to endow with any desired

characteristics, such as noise or hidden state. Therefore, a simulated grid environment is

an obvious problem to choose for an autonomous agent learning a world model.

This research began with a grid environment as an example environment. It was straight-

forward to implement a grid environment with manifest causal structure, and to represent

perceptions of the environment in terms of the relations in Section 2.1. Preliminary results

in the grid environment seemed promising | the agent achieved e�cient learning of a near

perfect model for a small problem. Other researchers, however, were reluctant to believe

the generality of these results. After much discussion of this issue, it became clear that

results in such an arti�cial environment are not su�ciently motivating and convincing to

support the claims this thesis makes. The ease of learning is attributed to the construction

of the environment, rather than to the learning algorithms.

Clearly, a more natural example environment was needed. The obvious example en-

vironment would be the real world, for example, the eighth oor of the AI Lab at MIT.

However, as we discussed in Chapter 1, an autonomous agent (robot) in a real-world setting

cannot have a set of perceptions such that the environment has manifest causal structure.

This thesis would have become a thesis on perceiving rather than on learning.

The search for a software environment that is realistic and complex, and has manifest

causal structure led to the Macintosh Environment. People are sympathetic to the com-

plexities of perception and learning in the Macintosh Environment because they also have

learned this (or a similar) environment. Although the learning problem is di�erent for peo-

ple and for the agent in this thesis, the realistic nature of the Macintosh Environment makes

it a motivating example for this research. This environment is further motivated by the

increasing interest in interface agents (Maes & Kozierok 1993, Sheth & Maes 1993, Lieber-

man 1993) which must cope with similar user-interface environments. Finally, since the

Macintosh Environment is complex and its behavior is evident on the screen, it is a perfect

example environment.

Now we are ready to proceed with the full development of the perceptual interface in

the Macintosh Environment.

35

2.3 Perceptions of the Macintosh Environment

The agent perceives every screen situation (for example Figure 2-1) as a set of perceptions.

Let us consider the \right" representation of the Macintosh screen. To people who are

familiar with window interfaces, the natural representation of the screen is as a set of

windows that contain several subparts, such as the close-box and title-bar. People who

perceive a screen in this way have had some experience working with windows and have

incorporated their knowledge of the function of the objects into their perception of the

screen. For example, there is no a priori reason to assume that the rectangle forming the

title-bar is connected to the rectangle forming the working area of a window. It could have

been a separate entity oating in front of the window rectangle.

In the opposite extreme, the perceptual representation of the Macintosh Environment

can give the gray-scale value of each pixel on the screen. Since there is a �nite number of

pixels, each with known value, this representation would be easy to implement and would

give the agent a complete picture of the screen. Unfortunately, if this thesis used the pixel

perceptual representation this document would never get written. It would probably take

the agent longer than my lifetime simply to learn that there are rectangles on the screen.

The pixel representation is not only impractical, it is far removed from how people view the

Macintosh screen.

We want the agent's perceptual representation to correspond to the way people perceive

the screen the �rst time they see a Macintosh computer. A person who has never seen a

window interface would not necessarily perceive windows as the primary functional unit. In-

stead, the screen would appear as a collection of rectangles with properties and relationships

between rectangles. Following this style of perception the agent perceives the Macintosh

screen as a list of relations on the speci�c objects (rectangles) with speci�c values.

2.3.1 Objects in the Macintosh Environment

Objects in the Macintosh Environment are rectangles. There is an object corresponding

to every rectangle visible on the screen. For example, the screen in Figure 2-1 will have

an object for Window 1 (\Window 1") as well as each of its subparts: the active-title-bar

(\Window 1 ATB"), the close-box (\Window 1 CB"), the zoom-box (\Window 1 ZB"), the

grow-box (\Window 1 GB"), the button (\Window 1 Button-Dialog-Item Window 2"), and

the interior area of the window (\Window 1 Interior"). These are rectangles with unique

features that are immediately recognizable as separate and signi�cant. Any active window

is comprised of these objects. Inactive windows, such as Window 2, are comprised of the

rectangle for the complete window (\Window 2"), the title-bar (\Window 2 TB"), the grow-

box (\Window 2 GB"), and the interior (\Window 2 Interior"). These names were chosen

so that people can easily interpret the learned knowledge. The names do not a�ect the

learning algorithms in any way.

We assume that objects are recognizable across space and time. That is, if Window 1

is partially hidden the agent can still recognize that it is the same object, because it can

perceive its unique title \Window 1". Windows in the Macintosh Environments are also

associated with a unique color which together with the perceptible icons make every object

identi�able. In general, this assumption is reasonable except in some robotics research.

As we discussed in Section 1.1, given the current types of sensors and limited perceptual

processing power, robots can only identify objects in restricted domains, but not in general

real-world settings.

36

2.3.2 Relations in the Macintosh Environment

The relations in the Macintosh Environment give information about the objects as well as

relationships between objects. The relations perceived in the Macintosh Environment are

summarized below.

EXISTS a binary relation on one object indicating whether the object is visible on the

screen.

EXISTS(o) = T i� the object is visible on the screen

(once the agent builds a knowledge base it may know about some objects that do not

appear on the screen)

TYPE the type of an object is one of rectangle, title-bar, active-title-bar, grow-box, zoom-

box, and close-box.

TY PE(o) 2 fREC; TB;ATB;GB; ZB;CBg

The type symbols are intended to be meaningful to us, but remember that to the

learning agent they are only symbols. The TY PE of an object corresponds to its

visible icon type. For example, in the top of Figure 2-2 the close-box of Window 2

has TY PE CB. The grow-box of Window 2 has TY PE GB, but the grow-box of

Window 1 has TY PE REC because Window 1 is not active and the grow-box icon

is not present.

OV a binary relation indicating that the �rst argument overlaps the second argument

OV (o1; o2) =

(
T i� o1 overlaps o2
F otherwise

For example, in the top screen situation of Figure 2-2 it is clear that

OV (Window 1, Window 2) = F

OV (Window 2, Window 1) = T

In the bottom situation of Figure 2-2 the overlap relationship is somewhat less clear.

Since we perceive the situation such thatWindow 1 overlaps Window 2, we de�ne the

OV relation as we perceive it. So

OV (Window 1, Window 2) = T

OV (Window 2, Window 1) = F:

For A and B in the following �gure

we de�ne

OV (A;B) = F

37

Figure 2-2: Macintosh screen situations with overlapping windows

38

OV (B;A) = F:

X the X-axis relationship of two objects

X(o1; o2) 2 f1122; 1212; 1221; 2211; 2112; 2121; 123; 132; 231; 213; 33g

These symbols show the ordering of the endpoints of the two objects as we encounter

them along the X (horizontal) axis moving from left to right. A \1" refers to an

endpoint of the �rst argument (o1), a \2" refers to an endpoint of the second argument

(o2), and a \3" refers to an endpoint of both objects (o1 and o2) simultaneously. For

example, in Figure 2-2 Window 1 starts to the left of Window 2 and extends past it

on the right. Moving left to right we encounter an endpoint of Window 1 (denoted as

\1"), then an endpoint of Window 2 (denoted as \2"). Next we �nd another endpoint

of Window 2 and then an endpoint of Window 1 | giving the string \1221" for the

X relation. Thus

X(Window 1, Window 2) = 1221

and similarly

X(Window 2, Window 1) = 2112:

A value containing a \3" occurs when the two arguments have mutual endpoints.

For example, the title-bar of Window 1 in Figure 2-2 starts and ends exactly where

Window 1 starts and ends. Therefore the X relation of Window 1 with its title bar is

X(Window 1, Window 1 TB) = 33:

Y the Y-axis relationship of two objects. Similarly to the X relation

Y (o1; o2) 2 f1122; 1212; 1221; 2211; 2112; 2121; 123; 132; 231; 213; 33g

where the Y-axis extends from top to bottom (as it is de�ned by the Macintosh

operating system.)

For example in the top screen situation of Figure 2-2

Y (Window 1, Window 2) = 1212

Y (Window 2, Window 1) = 2121:

In the bottom situation of Figure 2-2Window 2 is perceived to begin where Window 1

ends, so their Y relation is Y (Window 1, Window 2) = 132.

Notice that there is some ambiguity in the perceptions. In the bottom situation of

Figure 2-2 the agent perceives the Y relation of the two windows as 132. In the true envi-

ronment the Y relation of the windows may be 132 (the windows are as they are perceived),

1212 (the windows have 4 di�erent end-points), or 312 (Window 2 has the same start-point

as Window 1). The de�nition of the X and Y relations use the perceived bounding boxes

of the objects to assign a speci�c value. Thus Y (Window 1, Window 2) = 132. It is im-

possible to determine, from perceptions alone, the Y relation of the windows in the true

environment. This ambiguity is one of the situations where the Macintosh Environment is

39

non-deterministic. As you recall from Chapter 1 non-determinism is acceptable in environ-

ments with manifest causal structure as long as one of the possible outcomes occurs often

and the other outcomes are rare. In the example of Figure 2-2 the likely situation is that

the windows have four di�erent endpoints and the true Y relation is 1212.

There are other relations of interest in the Macintosh Environment. For example, the

agent does not perceive the features of a window (close-box, zoom-box, title-bar, etc.)

as part-of the window rectangle or even as contained-in the window rectangle. These two

relations give more insight into the workings of the Macintosh Environment than the overlap

(OV) relation above. Another concept of interest is the active window. It is obvious to

those familiar with window interfaces whether a window is active or not. (In the Macintosh

Environment the presence of lines in the title bar indicates an active window.) When a

window is active the agent perceives that the title-bar rectangle has a di�erent type (ATB

rather than TB), but it has to learn that the type ATB means that the window is active.

Chapters 4 and 5 address learning such concepts.

2.4 Summary

This chapter developed a general representation of perceptions as relations on objects. We

also selected a representation for the Macintosh Environment in which the objects are

rectangles and �ve relations (EXIST , TY PE, OV , X , and Y) on the rectangular objects

describe all the relevant aspects of any screen situation. With this set of perceptions the

Macintosh Environment remains complex and has manifest causal structure.

40

Chapter 3

Learning Rules

The goal of this thesis is to learn a causal world model in an environment with manifest

causal structure. The approach is to learn speci�c facts �rst, then to use the speci�c

knowledge to learn general concepts. Since the world model learned is a set of causal rules,

the �rst step of learning is to �nd causal rules that describe e�ects in the environment

directly from perceptions. A rule set that describes most aspects of the environment exists

because the environment has manifest causal structure. This chapter presents a rule learning

algorithm that converges to a set of reliable rules in environments with manifest causal

structure.

The problem of learning causal rules has been addressed by several researchers in the

past. Related research on rule learning, such as Drescher (1989) and Shen (1993), is dis-

cussed in Section 3.7. The di�culty of this problem stems from the abundance of percep-

tions, complexity of the rules, and noise in the environment or the perceptual interface.

These characteristics together with the necessity to search the space of possible rules make

learning hard or impossible.

The approach in this thesis overcomes these di�culties because the environment has

manifest causal structure. An agent in an environment with manifest causal structure has

many perceptions, but they are not low-level perceptions. As a result the learning algorithm

can use its perceptions directly to form rules instead of creating higher-level perceptions

or looking for hidden information. The structure of the rules is simple with this approach

(see Section 3.1) because e�ects that are describable by the perceptions typically depend

on few preconditions in the environment. Finally, although some noise is permitted in

environments with manifest causal structure, the extent of the noise is restricted.

The rule-learning algorithm has the task of learning a set of reliable rules that describe

characteristics in the environment. The algorithm has access to perceptions of the previous

state of the screen, the agent's action, and perceptions of the new state of the screen. (This

information is the algorithm's input.) The algorithm �rst isolates those e�ects in the new

state that are unexpected (given the current rule base). To �nd a reliable rule that explains

the unexpected e�ect, the algorithm searches for conditions in the previous state that are

the causes of this e�ect. Section 3.3 presents the rule-learning algorithm and heuristics that

reduce the time needed to search for preconditions.

The rule-learning algorithm in this chapter is proven to converge in environments with

manifest causal structure (see the proof in Section 3.4). The algorithm successfully learns

a set of rules that describes the Macintosh Environment. This chapter contains many

examples of rules the algorithm learns, and Section 3.5 shows that the learned world model

41

is useful for prediction and action selection.

3.1 The Structure of Rules

The world model is a set of causal rules. The number of rules in the world model is bounded

by a preset parameter which is determined by the available memory and the computational

speed of the computer on which the program runs. Each rule is a description of a cause

and e�ect due to an action in the environment. A rule

precondition ! action ! postcondition

means that if the precondition is true in the current state and the action is taken then

the postcondition will be true in the next state. The precondition and postcondition are a

boolean combination of perceptions in the environment. (The pre- and post-conditions can

be general, but this chapter considers only ground perceptual conditions.) The action can

be any of the agent's actions, a general action, or noaction. A noaction rule means that

whenever the precondition is true in the environment the postcondition is also true in the

environment.

A rule, r, applies in state S and action a (denoted applies(r; S; a)) when its precondi-

tions are true in state S and its action is a. A rule, r, predicts correctly from state S1
and action a to state S2 if it applies(r; S1; a) and its postcondition is true in state S2. Since

environments with manifest causal structure are not necessarily deterministic, a reliability

measure is associated with every rule. The reliability of a rule is its empirical probability

of predicting correctly.

One of the di�culties in learning rules is the generality of preconditions and postcon-

ditions. Theoretical machine learning shows that general boolean combinations are not

e�ciently learnable (Kearns & Vazirani 1994), which indicates that if the precondition and

postcondition may be any boolean combination of the perceptions the rules are hard to

learn. We restrict the descriptive power of rules, intending that this restriction result in

fast learning. The restrictions on the structure of the rules are derived from the logical struc-

ture of preconditions and postconditions, and from the assumption that the environment

has manifest causal structure.

First consider the logical restrictions on postconditions. We are interested in predictive

rules. In other words, when a rule applies in the current state and action we want it to

give a de�nitive condition to predict. Therefore we do not want postconditions to contain

negated conditions, such as \the rectangle is not a close-box" where the rectangle may still

be one of many types. Similarly we do not want disjunctive postconditions, such as \either

Window 1 is visible or Window 2 is visible", because we cannot know which condition is

true from such rules. Although such rules can be valid and testable, using them to predict

means solving a GRE style logic problem | a di�cult task even for people. Thus the

postcondition is restricted to a conjunction of positive perceptions. Notice also that a rule

P ! A ! C1 ^ C2 ^ C3

is equivalent to the rules

P ! A ! C1

P ! A ! C2

42

P ! A ! C3:

Whenever the former rule applies, all three of the latter rules apply, and both the former

and the latter predict the same conditions (C1, C2, and C3). The reverse is also true:

whenever any of the bottom rules apply, all the bottom rules apply as does the top rule.

So the postcondition can consist of one positive condition without loss of generality.

Although it may seem wasteful to create multiple rules when one rule su�ces, the

restriction to postconditions of one condition allows for a simple learning algorithm (see

Section 3.3). Chapter 4 describes a way to �nd conditions that are correlated in the envi-

ronment, much like the correlation of C1, C2, and C3, which enables the agent to collapse

the three bottom rules above to one rule while remaining within the one postcondition

requirement.

With regard to the precondition structure, since the rules should be expressive enough

to describe complex environments, we want the precondition of rules to be as general as

possible. We can make some simpli�cations without losing descriptive power. Consider a

disjunctive precondition

P1 _ P2 ! A ! C.

This rule can be replaced by the rules

P1 ! A ! C

P2 ! A ! C

without loss of generality. When a negated condition appears in a precondition it can be

replaced by exhaustive enumeration of the alternatives (since we assume that the set of

possible values for any relation is �nite). So the rules are restricted to a precondition which

is a conjunction of positive conditions and a postcondition which is one condition.

Finally, the assumption that the agent-environment interface has manifest causal struc-

ture implies that the agent perceives a fairly complete description of the state including

many details. When an event happens in the environment we expect the conditions rele-

vant to causing this event to be local to the observed event. Thus the number of relevant

conditions is probably small compared with the total number of perceptual inputs. In fact

for most rules in most environments I believe the number of relevant conditions to any

e�ect is very small indeed. (For example, in the Macintosh Environment two preconditions

su�ce.) Although the precondition is not restricted to any predetermined number of con-

ditions, the rule-learning algorithm will use this observation and try to explain events with

the simplest possible rules.

To summarize the above discussion, a ground rule has the form

precondition ! action ! postcondition

The precondition is a conjunction of perceptions and the postcondition is a single perception.

The perceptions have the value of the input relations or the value NP which stands for \not-

perceptible". (The not-perceptible value, NP , is the value of any relation on objects that

do not appear on the screen, or an unknown value for a relation.) The action, for the

purposes of this chapter, is any speci�c action or noaction.

Let us consider some example rules. In the Macintosh Environment the algorithm should

learn rules such as

43

Figure 3-1: Macintosh screen situations with overlapping windows

44

Window 2 covers Window 1 ! click-in Window 1 ! Window 1 is fully visible

for the transition of the screen situations in Figure 3-1. The description of this rule is high

level, and uses term such as covers and visible that are not part of the agent's perceptions.

The rule that the agent learns will be expressed in terms of its perceptions as

OV (Window 2, Window 1)= T

! click-in Window 1 ! OV (Window 1, Window 2) = T .

For this situation there will be a dual rule

OV (Window 2, Window 1) = T

! click-in Window 1 ! OV (Window 2, Window 1) = F

and some rules to explain the disappearance of the parts of the window (the close-box,

zoom-box, and title-bar.) These rules have the form

() ! click-in Window 1 ! EXIST (Window 2 CB) = NP

No precondition is needed for this rule because the close box disappears whenever a window

is not active.

The remainder of this section discusses the algorithm to learn such rules.

3.2 World Model Assumptions

In this section we introduce two assumptions about the environment. These assumptions

a�ect the world model that the agent constructs thereby inuencing the learning algorithm

as well as algorithms that use the learned model, such as the prediction algorithm. The

world model uses the following assumptions about the environment.

1. Perceptions persist unless there is some rule that states otherwise. (Objects also per-

sist because perceptions of the EXIST relation persist.) The persistence assumption

means that the agent does not have to learn and store rules for situations where

nothing changes, such as clicking in the active window.

2. If an object is not perceptible, all the relations on it are not perceptible.

Thus, for example, if Window 2 title-bar is not perceptible, as in the bottom of Figure 3-1,

the type of this title-bar is not perceptible. The �rst assumption implies, for example, that

starting in the situation in the top of Figure 3-1 following a click in Window 2 there will be

no events to explain because there is no change to the environment.

Now let us turn to the rule-learning algorithm.

3.3 The Rule-Learning Algorithm

The goal of the rule-learning algorithm is to learn a set of speci�c rules that are valid in

the environment. The algorithm uses a generate and test methodology to �nd valid rules.

It begins with an empty set of rules (no a priori knowledge) and uses its observations to

generate rules and to test if they predict correctly. The evolving nature of the rule set is

reminiscent of classi�er systems and the genetic algorithm (Holland 1976).

45

Algorithm 2 Learn()

[remove and reinforce rules]

for each rule r

Probabilistic-Rule-Reinforce(r).

[create new rules]

let di�erent-perceptions = perceptions that are di�erent in current-perceptions

from previous-perceptions.

for each di�erent-perception in di�erent-perceptions

if the di�erent-perception is not explained by some rule

if current-trial � MakenoactionRulesThreshhold then

make a new rule to explain di�erent-perception with noaction

else if the di�erent-perception is explained by some noaction rule whose

precondition is in di�erent-perceptions then

remove the di�erent-perceptions from di�erent-perceptions

else make a new rule to explain di�erent-perception

with action current-action

Figure 3-2: Outline of the Learn Algorithm

The rule-learning algorithm executes at every trial, namely after each action the agent

takes. (Recall from Chapter 2 that this algorithm assumes that the learner is the only

actor in the environment.) After every action the agent takes, the Macintosh screen

changes. The learning algorithm uses the before and after screen situations to learn the

e�ects of the action. The perceptions of the screen before the action are stored as the

previous-perceptions and the perceptions of the screen following the action are saved as

the current-perceptions. The action is saved as the current-action. These variables

are inputs to the rule-learning algorithm.

The world model is the output of the learning algorithm. It is also an input to the

learning algorithm which checks to see if an e�ect of the action is explained by the current

world model. Naturally, we do not want the learning algorithm to spend time explaining

e�ects that are already understood.

Figure 3-2 contains the outline of the rule-learning algorithm. The algorithm has two

main parts: (1) removing and reinforcing rules and (2) creating new rules.

The rule-learning algorithm reinforces every rule at every trial. Section 3.3.3 discusses

the evaluation of rules. To create new rules the algorithm �nds perceptions that are di�erent

in the current-perceptions from the previous-perceptions and that are not explained by any

existing rule. If an existing rule already explains an e�ect in the environment, there is

no need for further explanation. The agent also does not explain perceptions that do not

change following the action because the world model assumes that perceptions persist. Once

the agent �nds a perception to explain it creates a new rule. The method for creating rules

is given in Section 3.3.2. The Learn algorithm also learns and uses noaction rules to learn

the world model. The following section examines noaction rules and their e�ect on the

learning algorithm.

46

3.3.1 noaction Rules

Recall that the purpose of noaction rules is to express a correlation among perceptions.

These rules indicate that a perception is always true when another perception is true. For

example, consider Figure 3-3 where Window 1 disappears following a click-in Window 1's

close-box. This action causes many changes. Window 1 disappears, as does the close-box,

zoom-box, interior, title-bar, etc. All these changes must be explained and they are not

independent. If the algorithm succeeds in correlating the existence of the window parts,

then one rule that explains the disappearance of the window due to clicking the close-box

su�ces. noaction rules provide a means of learning the correlated perceptions. Some

examples of valid noaction rules in the Macintosh Environment are

EXIST (Window 1) = T ! noaction ! EXIST (Window 1 interior) = T

EXIST (Window 1 ATB) = T ! noaction ! EXIST (Window 1 CB) = T

and

EXIST (Window 1 ATB) = T

! noaction ! OV (Window 1 ATB, Window 1) = T .

These rules describe that when Window 1 is present so is its interior, when the active-title-

bar ofWindow 1 exists so does the close-box, and whenever the active-title-bar ofWindow 1

exists it overlaps Window 1.

As a result of learning noaction rules the number of rules in the world model is reduced.

Consider an environment in which perception C2 is true whenever perception C1 is true,

and the following rules are true

P1 ! A1 ! C1

P1 ! A1 ! C2

P2 ! A2 ! C1

P2 ! A2 ! C2.

Because C2 is true whenever C1 is true, the noaction rule

C1 ! noaction ! C2

is true in the environment. This rule makes the second and the fourth rules above redundant

because the e�ects that they predict are predictable from the �rst rules with the noaction

rule and from the third rule with the noaction rule respectively. The revised set of rules

is more concise in capturing the characteristics of the environment.

The rule-learning algorithm in Figure 3-2 tries to learn the shorter world model which

uses noaction rules. In the second part of the algorithm, it �nds perceptions that change

in the environment due to the current-action and are not explained by any rule. The

algorithm �rst tries to create noaction rules to explain the perceptions. (The length of

time that the algorithm spends creating noaction rules is determined by the parameter

MakenoactionRulesThreshhold. The algorithm must use this control strategy because the

agent has no way of knowing when it has learned all the correct noaction rules.)

After the algorithm has spent some time learning noaction rules it creates rules that

describe the e�ects of actions. The algorithm uses the noaction rules it learned to reduce

the number of perceptions for which it creates rules. Let us return to our example above.

Suppose that the algorithm has already learned the rule

47

Figure 3-3: Macintosh screen before and after a click in Window 1 close-box

48

C1 ! noaction ! C2

and now �nds that perceptions C1 and C2 change due to action A1. Since the perception

C2 is explained by the noaction rule the algorithm only creates rules for the perception

C1 with action A1. Now the algorithm must �nd the right set of preconditions to make a

correct rule which is the topic of the next section.

3.3.2 Creating New Rules

The task that the algorithm to create rules faces is: given a postcondition and an ac-

tion, to �nd a precondition (conjunction of perceptions in the previous-perceptions) such

that the resulting rule is valid. To create noaction rules the algorithm uses the current-

perceptions instead of previous-perceptions, but the algorithm to �nd preconditions is oth-

erwise unchanged. Since the agent does not have an oracle or teacher to help it �nd a good

precondition it can either enumerate all the possible preconditions or guess at the right

preconditions.

Enumerating the possible preconditions from the list of perceptions is straightforward

if the agent has enough space to create all possible rules and enough time to check if these

rules are reliable. Since the set of possible preconditions is the power set of the previous-

perceptions, its size is exponential in the number of perceptions. Therefore, the algorithm

cannot create all the possible rules. For example, in the Macintosh Environment with two

windows the number of perceptions can be as high as 420. The size of the power set is 2420

which is clearly too large to enumerate. Even if the number of preconditions is bounded

by a constant (as I believe it is for most environments), the number of possible rules is too

large to create all the rules. In the Macintosh Environment, if the number of preconditions

is restricted to two, then the set of possible preconditions has size 88411 | which includes

the possible rules for one changed perception out of 420 possible perceptions.

Therefore, the algorithm creates a few rules to attempt to explain one situation at a time

(typically between 1 and 10 new rules). If these rules are not reliable the algorithm will have

the opportunity to create additional rules when this e�ect occurs again. The advantage of

this approach is that the size of the rule set remains manageable. The disadvantage is that

unreliable rules may be created repeatedly, but such rules are removed quickly. Once the

algorithm �nds reliable rules it does not create additional rules.

As a baseline strategy for �nding preconditions, the algorithm selects at random from

the list of previous-perceptions. A few strategies improve the algorithm's chances of picking

good preconditions. These heuristics are described in the next four sections.

Learn Simple Rules First

When creating a rule to explain the postcondition, the algorithm does not know the nec-

essary number of preconditions to make a reliable rule. Rather than create rules with a

large number of preconditions, the algorithm tries simple rules �rst. It creates rules with

no preconditions �rst. When it it has spent some time creating rules for an e�ect with

no preconditions and has not been able to explain the e�ect it creates rules with one pre-

condition, then two preconditions, and so on. The length of time (number of trials) that

the algorithm spends creating rules with zero preconditions, one precondition, two precon-

ditions, etc. depends on parameters but contains a random element. Thus early on the

algorithm creates rules with zero preconditions only. Later it creates rules with more and

more preconditions but occasionally it makes rules with fewer preconditions. This strategy

49

of enumeration is commonly used in computer science algorithms and saves this algorithm

both time and space.

Since there is a smaller number of rules with few preconditions the algorithm creates

fewer rules and spends less time creating and evaluating rules. For example, in Figure 3-1

following a click-in Window 1 action the postcondition EXIST (Window 1 CB) = T is

explained by the rule

() ! click-in Window 1 ! EXIST (Window 1 CB) = T

with no preconditions. The learning algorithm �nds this rule immediately when using the

strategy outlined above. It creates no additional rules and does not spend any extra time

explaining the postcondition.

Use the Same Relation

Most of the time the cause of a change is local. For example, if following a click in Window 1

the condition OV (Window 1,Window 2) changes from F to T , then the fact thatWindow 1

was under Window 2 is more relevant than the fact that Window 2 has a close-box. The

algorithm, therefore, has a higher probability of creating rules with preconditions that

have the same relation and objects as the postcondition with the value of the relation on

these objects in the previous perceptions. The probability of picking the same relation

is determined by a parameter. In this example, the algorithm tries the conditions OV

(Window 1, Window 2) and OV (Window 2, Window 1) with higher probability than other

perceptions.

Focus Attention

The algorithm also keeps the size of the rule set small by trying to learn one relation at a

time. In the Macintosh Environment it concentrates on learning the EXIST relation �rst,

then the TY PE relation, the OV relation, theX relation, and the Y relation. (This ordering

of relations is imposed because an understanding of the EXIST relation is instrumental

for predicting the other relations. For example, whenever a close-box is present it has type

close-box. To use this simple rule to predict the type of a close-box the agent must be able

to predict that the close-box is present. The order of learning the remaining relations is

arbitrary.) Naturally, as the algorithm learns each additional relation the number of rules

increases. The number of rules describing e�ects on a relation, however, is typically smaller

when the e�ects are understood than the number of rules maintained as hypotheses during

learning.

Mysteries

A mystery is an e�ect the agent sees which it �nds surprising enough to spend extra e�ort

to explain. When Newton's apple (allegedly) fell from the tree, Newton found this event

both surprising and interesting. He spent much e�ort to think and re-think this event until

he understood why the apple fell. The mystery heuristic mimics the process of learning by

re-playing events in the learner's mind. When the agent encounters a surprising e�ect it

saves the relevant data (the previous state, action, and postcondition). Later, the agent

repeatedly creates rules to explain this event, until a reliable rule explains the event.

One of the di�culties with using mysteries is that the agent does not know if an event

is rare | a mystery | when it observes the event. The agent must decide if the event is

50

su�ciently important to save based on some tangible measure. The learning algorithm uses

a measure of surprise which depends on the rules explaining this event, or lack thereof.

The de�nition of a surprising event depends on the environment. When the environment

is easy to learn and all situations are equally likely, an event must be very surprising to

become a mystery. The algorithm may require that there are no potential rules explaining

an event to make a mystery. In other cases, the requirement may be that there are no

reliable rules to explain the event.

This criterion for mysteries does not ensure that the saved events are very rare. Some

saved events may not be rare, especially early in the learning process when all events are

surprising. As the world model improves, however, many events will be explained. Thus

the surprising events found later on are likely to be true mysteries. Any frequently occuring

event that was saved as a mystery will also be explained quickly leaving the agent with a

set of mysteries.

The agent tries to explain the mysteries periodically. The interval between successive

explanations depends on a preset parameter | typically every 100 trials. At this time,

the agent checks if the mysteries are explained, removes the explained mysteries, and ranks

the remaining mysteries according to their measure of surprise. The agent then re-plays

the most surprising of these events, i.e., it sets the previous perceptions to the mystery's

previous perceptions and the current action to the mystery's action and then creates rules

to explain the mystery's postcondition. Again, the number of replayed mysteries depends

on a parameter. For the Macintosh Environment the algorithm replays 10 mysteries.

Mysteries are particularly useful in environments with a few rare events. That is, en-

vironments where most situations are encountered often, but a few situations occur infre-

quently. The Macintosh Environment is not one that has many rare events so the following

example is concocted but possible. Consider a screen situation with ten windows where

each window has a button which pops the next window up, and this button is the only way

to bring up the windows. If the agent takes random actions, then window 10 will rarely be

present. The agent will learn more quickly by re-playing this situation as a mystery than by

waiting for the situation to occur again. When there are no rare events in the environment,

mysteries still appear to speed the learning of rules somewhat.

In summary, the rule-creation algorithm uses some e�ective heuristics to guess the pre-

conditions for a rule. The algorithm does not guarantee that the rules it creates are valid;

they are only guesses. Since there are few valid rules compared with the total number of

rules, most rules that the algorithm creates are not valid. For this reason new rules are put

on probation initially and are not considered part of the world model until they are taken

o� probation by the evaluation algorithm.

3.3.3 Reinforcing Good Rules and Removing Bad Rules

The objective of the evaluation algorithm is to determine if rules are valid. A rule is

valid if its true probability of predicting correctly1 is above a predetermined threshold.

The di�culty of determining if a rule is valid is that the learner does not know the true

probability of predicting correctly. Instead the algorithm must use the empirical reliability

1Note that a rule's probability of predicting correctly may depend on the sequence of actions the agent

takes (e.g., the agent may not explore some states of the environment). Thus this measure is not always

well-de�ned. This learning algorithm, however, selects actions at random with equal probability of taking

any action from any state. Thus the probability of predicting correctly for any rule is well-de�ned (see

Section 3.4 for a detailed discussion of this issue).

51

of a rule to determine if it is valid. The process of evaluating rules uses statistical methods

that take into consideration the error from using the empirical rather than the true measure

of reliability.

To determine the reliability of a rule the agent tests rules in the environment. Recall

that rules are predictive. A rule

precondition ! action ! postcondition

means that if the preconditions are true in one state and the action is taken, then the

postcondition will be true in the next state. The algorithm evaluates the reliability of rules

based on their predictive ability.

Consider the rule

() ! click-in Window 1 CB ! EXIST (Window 1) = NP .

This rule applies whenever the agent's last action was a click in Window 1's close-box. The

above rule predicts correctly if Window 1 disappears in the next state. This rule is a perfect

predictive rule since a window always goes away following a click in its close-box.

Prediction is a way of estimating a rule's probability of predicting correctly. We de�ne

a valid rule as having probability of predicting correctly above threshold �. Rules with

probability of predicting correctly above this threshold are considered valid and rules with

lower probability of predicting correctly are not valid. The value of the threshold � depends

on the environment. In deterministic environments the threshold is 1, because all the

reliable rules should be perfect predictors. In environments with manifest causal structure,

the threshold depends on the degree of non-determinism of the environment.

Consider �rst the simpler case of deterministic environments. Since reliable rules for

such environments are perfect predictors, these rules never make a prediction error. A rule

can therefore be removed as soon as it predicts incorrectly. This strategy is implemented

in algorithm Deterministic-Rule-Reinforce below. (The algorithm stores the number of

times each rule, r, applies in apply(r) and the number of correct predictions in success(r).

The reliability of a rule reliability(r) = success(r)=apply(r). The functions precondition(r),

action(r), and postcondition(r) refer to the precondition, action, and postcondition of r

respectively.) This rule-reinforcement algorithm executes for every rule at every trial, i.e.,

after every action the agent takes. The previous-perceptions are the perceptions prior to

taking the action and the current-perceptions are the perceptions following the action.

Algorithm 3 Deterministic-Rule-Reinforce(r)

if r is a noaction rule then

let prev-perceptions = current-perceptions

else let prev-perceptions = previous-perceptions

if applies(r, prev-perceptions, current-action) then

increment apply(r)

if postcondition(r) is true in the current-perceptions

then increment success(r)

else remove r.

If the environment is non-deterministic the algorithm estimates the reliability of rules,

but the estimated reliability is not necessarily equal to the rule's true probability of predict-

ing correctly. The estimated reliability does not guarantee that the rule's true probability

52

Algorithm 4 Probabilistic-Rule-Reinforce(r)

if r is a noaction rule then

let prev-perceptions = current-perceptions

else let prev-perceptions = previous-perceptions

if applies(r, prev-perceptions, current-action) then

increment apply(r)

if postcondition(r) is true in the current-perceptions then

increment success(r)

let test = SequentialTest(apply(r), success(r), p0, p1, �(current-trial), �(current-trial))

if test = accept then

remove r from probation

reset apply(r) and success(r) to 0.

if test = reject then

remove r.

of predicting correctly is above or below the threshold. To determine if the rule is above

or below the threshold, with high probability, the algorithm uses the sequential ratio test

(Wald 1947). Algorithm Probabilistic-Rule-Reinforce describes the rule evaluation al-

gorithm for non-deterministic environments. The sequential ratio test is described in the

next section.

Notice that algorithm Probabilistic-Rule-Reinforce repeatedly tests rules, rather

than testing a rule once and either accepting or rejecting. Rules must be tested repeatedly

because there is a small probability that the sequential ratio test will accept a bad rule (as

we will see in the following section). Re-testing rules is necessary for convergence to a good

world model (see Section 3.4).

The Sequential Ratio Test

The sequential ratio test determines, with high probability, if the estimated error probability

of a rule is above or below a threshold. In algorithm Probabilistic-Rule-Reinforce, let

p1 be 1� the value of the threshold, (1� �), and let p0 be a smaller value (e.g., p1 = 0:1

and p0 = 0:05). The parameters � and � determine the probability of misclassifying a rule

as reliable or not. In algorithm Probabilistic-Rule-Reinforce � and � become smaller

with time, speci�cally �(t) = �(t) = 1

22dlog te
. Note that �(t) and �(t) are not recomputed

after every trial, only after increasing intervals, and the probability of making mistakes goes

to zero with time.

The details of the sequential ratio test as given by Wald (1947) are as follows.

The Problem Given a coin with unknown probability of failure p.

Test if p � p0 vs. p � p1, accept if p � p0, reject if p � p1.

Requirements The probability of rejecting a coin does not exceed � whenever p � p0,

and the probability of accepting a coin does not exceed � whenever p � p1.

The Test Let m be the number of samples (apply(r)), and fm be the number of failures

in m samples (apply(r)� success(r)).

53

if

fm �
log 1��

�

log p1
p0
� log 1�p1

1�p0
+m

log 1�p0
1�p1

log p1
p0
� log 1�p1

1�p0
reject.

if
log �

1��
log p1

p0
� log 1�p1

1�p0
+m

log 1�p0
1�p1

log p1
p0
� log 1�p1

1�p0
� fm

accept.

Otherwise, draw another sample.

This test de�nes two lines with di�erent intercepts and the same slope, where the area

above the �rst line is a reject region and the area below the second line is the accept

region (as shown in the �gure below). The test is a random walk which terminates

when it reaches the reject or accept regions.

Testing the rules using the sequential ratio test is e�cient since the accept and reject

regions are de�ned once the parameters p0, p1, �, and � are set. The algorithm pre-computes

a table which determines acceptance (and rejection), given the values of success(r) and

apply(r), in one step.

Observe that theProbabilistic-Rule-Reinforce algorithm repeatedly tests rules (even

if they are o� probation). Rules must be tested repeatedly because the sequential ratio test

has a small probability of accepting an invalid rule. The test likewise has a small probability

of rejecting a valid rule and when such rules are removed we hope that the rule-creation

algorithm will re-create the rule or a similar rule to explain the same e�ect. The probability

of making mistakes of this kind decreases with time (because the parameters � and � depend

on the current-trial.) The importance of this issue will become clear as we go through the

convergence result in the next section.

3.4 Rule Learning Converges

This section proves that the rule-learning algorithm converges to a good model of the en-

vironment. Before proceeding with the proof, the notion of an environment with manifest

causal structure is de�ned as well as the model of the environment which the learning al-

gorithm is aiming toward. For simplicity, we prove that the learning algorithm converges

in deterministic environments with manifest causal structure �rst (in Section 3.4.1). Sec-

tion 3.4.2 proves the general convergence result for any environment with manifest causal

structure.

54

Figure 3-4: A deterministic environment

3.4.1 Convergence in Deterministic Environments

A deterministic environment is essentially a �nite automaton. There are known algorithms

for learning �nite automata (see, e.g., Rivest & Schapire (1989) and Rivest & Schapire

(1990)). This section presents the convergence proof in deterministic environments to pre-

pare the reader for the more complex proof of convergence in probabilistic environments.

We �rst de�ne terms such as deterministic environments with manifest causal structure

and the goal world model. Then we prove convergences to the goal model in deterministic

environments with manifest causal structure.

De�nition of Deterministic Environments with Manifest Causal Structure

Consider the deterministic environment in Figure 3-4. There are two binary relations of

0 arguments, X and Y . The perception X() = T is abbreviated as X , and X() = F is

abbreviated X. Similarly, Y () = T is Y , and Y () = F is Y . The agent in the environment

of Figure 3-4 has two actions, a and b, where a toggles X and b toggles Y . The states of the

graph are subsets of the perceptions X , Y , X, and Y , and there is one transition from every

state on every action, a and b. These two observations de�ne a deterministic environment

with manifest causal structure.

De�nition 1 A deterministic environment with manifest causal structure is a

connected graph where the nodes are states (subsets of perceptions) and there is exactly one

directed arc for each action from every state.

De�nition of a Goal World Model

We have discussed the structure of the world model extensively. Recall that the world model

is a set of rules. In this section we discuss a model of a particular action and postcondition

pair A�!C. The world model of the whole environment is a collection of models of A�!C

for every action A and postcondition C. The following de�nition of a model holds for any

environment (not only deterministic environments).

55

De�nition 2 A model of an (action, postcondition) pair (A
�!C) in an environment is a

set of rules, R. Each rule in R has the form ri = pi
A
�!C, where pi is a conjunction of

perceptions of the environment.

The learning algorithm aims toward learning a complete-model of its environment.

De�nition 3 A complete-model of
A
�!C in a deterministic environment contains all

the rules with action A and postcondition C that are true for the environment. (I.e., in

any state where the rule's preconditions are true the arc on action A leads to a state where

condition C is true.)

In the environment in Figure 3-4, the complete-model for
a
�!X contains the rule

X ! a ! X .

Similarly, the complete-model for b
�!Y contains the rule

Y ! b ! Y :

The complete-model for a�!X also contains rules such as

XY ! a ! X

that are extraneous. Such rules do not add new information; rather, they are more speci�c

than some other valid rule. To avoid learning such speci�c rules and other rules that do

not add new information the learning algorithm's true aim is to learn a model that is

predictively-equivalent to the complete-model, not the complete-model itself. The following

de�nition of predictively-equivalent models holds for all environments.

De�nition 4 One model of
A�!C, R1, predictively-implies model R2 of

A�!C (R1 =)

R2) if 8r1i 2 R1, r
1
i = p1i

A�!C and in every state where p1i is true at least one of the p2j 's

is true (denoted p1i) p21 _ p
2
2 _ : : :) where p

2
j are the preconditions of rules in R2.

De�nition 5 Two models of A�!C, R1 and R2, are predictively-equivalent (R1 � R2)

i� R1 =) R2 and R2 =) R1.

Proof of Convergence in Deterministic Environments

This section proves Theorem 1 which states that the rule-learning algorithm converges in de-

terministic environments with manifest causal structure. We assume the learning algorithm

uses the Deterministic-Rule-Reinforce algorithm to evaluate rules. The proof shows

that the algorithm converges to a model that is predictively-equivalent to the complete-

model.

The theorem requires that every rule in the complete-model is exercised in�nitely often

and every rule not in the complete-model is violated in�nitely often. This requirement

guarantees that the agent has the opportunity to explore enough of its environment so that

it can learn the world model. An agent obviously cannot learn about a �ve room house if it

never goes outside of the bathroom. One way to satisfy this condition is to select random

actions.

56

Theorem 1 In a deterministic environment with manifest causal structure, if every rule in

the complete-model of A
�!C is exercised in�nitely often and every rule not in the complete-

model of A
�!C is violated in�nitely often, the learning algorithm with the Deterministic-

Rule-Reinforce procedure will converge to a model of A
�!C that is predictively-equivalent

to the complete-model of
A
�!C.

Proof: (1) The learning algorithm converges.

Since the environment has manifest causal structure, there is a �nite number of perfect

predicting rules for
A
�!C.

At any time that the set of rules the algorithm learned does not explain some situation

there is a non-zero probability that the algorithm will create one of the perfect predicting

rules.

This process will stop when the algorithm has all the perfect rules, or all situations are ex-

plained. At this time no new rules are created. All the perfect rules will be kept inde�nitely,

and the imperfect ones will be removed eventually.

(2) The complete-model of A�!C, RC, and the learned model, RL, are predictively-

equivalent.

Show that RC =) RL.

For any rule rc = pc A�!C in RC

case 1 rc 2 RL. Then clearly pc)
S
i p

l
i (the union of all preconditions in RL), because pc

is equal to one of the pli's.

case 2 rc 62 RL. If rc was created it would never be removed since it would never make a

mistake. So rc was not created. There are two reasons for not creating a rule:

� A�!C was explained by some other rule every time rc applied. In this case

pc)
S
i p

l
i.

� The rule creation algorithm did not select the preconditions pc. But with in-

�nitely many repetitions of pc A�!C, and random precondition selection invoked

in�nitely often, pc would be selected eventually with probability 1.

So RC =) RL.

Now show that RL =) RC.

We need to show that for any rule rl = pl
A�!C in RL it must be the case that rl 2 RC.

Assume to the contrary that rl 62 RC. To create rl the learner must see examples where

pl A�!C is true, and where no rules explain these situations. Although situations where

pl
A
�!C is true are seen in�nitely often, as more and more perfect predictors are found

these situations will be explained.

So an imperfect predictor like rl may be created early on, but it will be removed because

it will be violated in�nitely often. When the learning algorithm converges A�!C will be

explained and rl will not be created again. This argument shows that rl cannot be an

imperfect predictor, so rl 2 RC, and clearly pl)
S
i p

c
i .

So RL =) RC.

57

Now consider a learning algorithm that attempts to learn only the rules about conditions

that change in the environment from one state to the next. This learning algorithm would

not try to learn the rules

X ! b ! X

and

Y ! a ! Y

for the environment in Figure 3-4. The goal of the learner, in this case, is to learn a model

that is equivalent to the complete-model excluding the rules that do not describe a changed

postcondition. We de�ne this model to be the �-complete-model.

De�nition 6 A �-complete-model of A
�!C in a deterministic environment contains

all the rules with action A and postcondition C that are true in the environment and that

explain situations where C is changed from the previous state.

The convergence theorem holds with minor modi�cations to the proof.

Theorem 2 In a deterministic environment with manifest causal structure when every

rule in the �-complete-model of A�!C is exercised in�nitely often and every rule not

in the �-complete-model of
A
�!C is violated in�nitely often, the learning algorithm with

the Deterministic-Rule-Reinforce procedure will converge to a model of
A�!C that is

predictively-equivalent to the �-complete-model of A�!C.

3.4.2 Convergence in Probabilistic Environments

This section extends the proof of Theorem 1 to include probabilistic environments. Recall

from Chapter 1 that if the underlying environment is non-deterministic, if there is hidden

state in the environment, or if the learner's perceptions of the environment are incomplete,

then the agent's perceived environment is probabilistic. This section extends each step of the

previous section to probabilistic environments. We de�ne probabilistic environments with

manifest causal structure and prove that the learning algorithm converges to the desired

model. Probabilistic environments present several complications that must be resolved prior

to attempting the convergence proof.

Randomized Action Selection

The main complication in probabilistic environments is that the probabilities of changing

state in the environment are not always well-de�ned and may depend on the learner's action

sequence. Thus, before we can de�ne manifest causal structure in probabilistic environments

we must make these probabilities well-de�ned by making an assumption about the learner's

action selection mechanism.

Assumption 1 The learner uses action selection such that in any perceptual state there is

a probability vector on actions. I.e., for each perceptual state, PS there is a vector of action

probabilities (qPS1 ; qPS2 ; : : : ; qPSn) such that the probability of taking action j in perceptual

state PS is qPSj , where n is the number of actions and qPSj > 0 for each j. Call this action

selection policy randomized action selection.

58

Assuming that the agent uses a randomized action selection policy does not imply that

the agent selects actions at random. Rather the agent can use any method to select actions,

as long as the distribution of actions in each state de�nes a probability vector with the

above requirements.

De�nition of Environments with Manifest Causal Structure

This section de�nes the notion of manifest causal structure in probabilistic environments.

De�nition 7 An environment with manifest-causal-structure(�) is a connected graph

where the nodes are states (subsets of perceptions) and there is at least one directed arc for

each action from every state. The arcs are labeled with a probability. The sum of the

probabilities for each action from any state is 1, and there is an arc from each state for

each action with probability � �. (We assume that the agent in the environment uses a

randomized action selection policy.)

We need to show that the probabilities on the arcs in the environment are well-de�ned.

Lemma 1 The probabilities on arcs in an environment graph are well-de�ned when the

agent uses a randomized action selection policy.

Proof: Let the underlying environment have states S1; : : : ; Sk, actions A1; : : : ; An, and

a probability on transitions P (Sl
A
�!Sm) for every pair of states Sl and Sm, and action

A. (Recall that the underlying environment may be non-deterministic. If the underlying

environment is deterministic then P (Sl
A
�!Sm) = 1 for every transition.) The (perceived)

environment has perceptual states PS1; : : : ; PSk0 , actions A1; : : : ; An, and a probability vec-

tor (qPSA1
; qPSA2

; : : : ; qPSAn
) for each perceptual state PS (qPSAj

is the probability of taking action

Aj in perceptual state PS). Lastly, there is a mapping H from states in the underlying

environment to perceptual states where H(Sl) = PSi if state Sl maps to perceptual state

PSi.

For each state in the underlying environment, the probability of taking action A in

state S is P (S A�!) = q
H(S)
A . These probabilities de�ne a Markov chain in the underlying

environment.

Since the underlying environment is a Markov chain, we can compute the probability of

being in any state in the underlying environment. For each state Sm

P (Sm) =
X
Sl;A

P (Sl)P (Sl
A�!)P (Sl

A�!Sm)

where exists transition Sl
A
�!Sm. To �nd the probabilities solve the linear equations.

The probability of being in a state together with the probabilities of taking any action

de�ne the probability of any arc in the perceptual environment. To compute the probability

of an arc we need the probability of perceiving PSi when starting in a state where PSj

is perceived and taking action A with probability P (PSj
A�!). We can compute this arc

probability as follows:

P (PSijPSj
A�!) =

P (PSj
A�!PSi)

P (PSj
A
�!)

59

Figure 3-5: An example of a deterministic underlying environment and the corresponding

non-deterministic perceived environment

=

P
Sl;Sm

P (Sl)P (Sl
A�!)P (Sl

A�!Sm)P
Sl
P (Sl)P (Sl

A�!)

where H(Sl) = PSj , H(Sm) = PSi, and exists transition Sl
A�!Sm. Thus the arc probabil-

ities are well-de�ned.

To clarify the proof above let us compute the arc probabilities for a simple example.

Consider the deterministic environment on the left-hand side of Figure 3-5. This envi-

ronment collapses to the probabilistic perceived environment on the right, since the agent

perceives only the condition W in all of the states on the left. Suppose that the probability

of taking action a or b is 0:5 in every state.

We can compute the probability of being in any state as follows. Let x be the probability

of being in state B of the underlying environment. Then there is x probability of being

in the �rst W state, x=2 probability of being in the second W state, x=4 in the third,

and x=8 in the last W state. Since the probability of being in some state is 1, we �nd

that x = 8=23. Now to compute the transition probabilities in the perceived environment.

The probability of going from B to W on action a or b is 1 as it is in the underlying

environment. The probability of going from W to B on b is also 1 since all W states in

the underlying environment go to B on b. The probability of going from W to B on a is

P (BjW a�!) =
P (W

a
�! B)

P (W
a�!)

. The probability of transition from a W state on a to a B state

is P (W a�!B) = (x=8) � (1=2), and P (W a�!) = 15x=16. So P (BjW a�!) = 1=15 and the

probability of going from W to W on a is 14=15.

Note that when the perceptual environment has hidden state, the trials may not be

independent, which violates the conditions under which the sequential ratio test is known

to achieve its acceptance requirements. But because the action selection is randomized and

rules are tested repeatedly with longer and longer tests, the tests are likely to include ex-

amples from unrelated states of the environment. Thus we assume the trials are su�ciently

60

Figure 3-6: A probabilistic environment

independent.

The perceived environment in Figure 3-6 is a probabilistic environment with manifest

causal structure. This environment is similar to the environment of Figure 3-4, but b

toggles Y deterministically while a toggles X with high probability (0:9). As a result this

environment has manifest-causal-structure(:9) with probability vector (:5; :5) on actions a

and b in every state.

In an environment with manifest-causal-structure(�) there may be rules that are not

perfect predictors. For example the rule

X ! a ! X

has reliability :9 in the environment of Figure 3-6. Therefore, we de�ne a complete-

model(�). The goal of the learner is to learn a model that is predictively-equivalent to

the complete-model(�) of the environment.

De�nition 8 The complete-model(�) of
A�!C in an environment with a randomized

action selection policy is the set of all rules with action A and postcondition C that have

de�ned reliability � � in the environment.

Proof of Convergence in Probabilistic Environments

This section presents the main (theoretical) result of this chapter in Theorem 3 which states

that learning converges to the complete-model(�) in environments with manifest causal

structure. Before proceeding with the main convergence theorem we need the following

lemma which states that the learning algorithm for probabilistic environments makes a

�nite number of mistakes when it evaluates rules.

Lemma 2 The number of erroneous acceptances and rejections the Probabilistic-Rule-

Reinforce procedure makes makes with parameters �(t) = �(t) = 1

22dlog te
is �nite.

Proof: The number of mistakes the Probabilistic-Rule-Reinforce procedure makes is

bounded by the probability of making mistakes at each trial (�(t) + �(t)) multiplied by the

number of rules at each trial (which is bounded by a constant). So it remains to show that

the probabilities of making mistakes for all time have a �nite sum.

61

Let k = dlog te.

1X
t=1

�(t) =
1X
t=1

1

22dlog te
=

1X
k=0

1

22k
2k =

1X
k=0

1

2k
= 2:

Similarly
P1

t=1 �(t) is �nite. So the total number of mistakes the algorithm makes is �nite

with probability 1 (see the Borel-Cantelli lemmas (Grimmett & Stirzaker 1982)).

The convergence result for probabilistic environments shows that the learning algo-

rithm converges to a model that is predictively equivalent to the complete-model(�). It

assumes that the learner uses a randomized action selection policy. Like Theorem 1, rules

in the complete-model(�) must be exercised in�nitely often and rules not in the complete-

model(�) must be violated in�nitely often. If the underlying environment is �nite then

randomized action selection is su�cient to guarantee that rules in the complete model are

exercised in�nitely often and rules not in the complete model are violated in�nitely often.

In Theorem 3 we do not assume that the environment is �nite. Rather the theorem assumes

that rules are exercised in�nitely often directly.

The proof of the theorem follows the outline of the proof for Theorem 1, with modi�ca-

tion in the details.

Theorem 3 In an environment with manifest causal structure where the learner uses a

randomized action selection policy and every rule in the complete-model(�) of A�!C is

exercised in�nitely often and every rule not in the complete-model(�) of A�!C is violated

in�nitely often, the learning algorithm with the Probabilistic-Rule-Reinforce procedure

will converge to a model of A�!C that is predictively-equivalent to the complete-model(�)

of A�!C.

Proof: Consider the set of rules accepted by the sequential ratio test with threshold �.

Call this rule set RL.

(1) RL converges.

Since the environment has manifest causal structure, there is a �nite number of rules for
A�!C with reliability � �.

At any time that the set of rules the algorithm learned does not explain some situation there

is a non-zero probability that the algorithm will create a rule with reliability � �. Since

the algorithm makes a �nite number of mistakes, when it is not making any more mistakes

it is guaranteed never to reject these rules. Eventually either all rules with reliability � �

will be in RL, or all situations that can be explained by rules with reliability � � will be

explained by some rule in RL.

New rules to explain situations that are not explained by any rule with reliability � �

will be created continually, but these rules have reliability < �. When the Probabilistic-

Rule-Reinforce algorithm does not accept erroneously these rules will not be accepted.

(2) The complete-model(�) of A�!C, RC, and the learned model, RL, are predictively-

equivalent.

Show that RC =) RL.

For any rule rc = pc A�!C in RC

case 1 rc 2 RL. Then clearly pc)
S
i p

l
i (the union of all preconditions in RL), because it

is equal to one of them.

62

case 2 rc 62 RL. rc could be created and then removed with probability �(t), but there are

in�nitely many opportunities to create rc and the number of mistakes the algorithm

makes is �nite so the probability that the learner is continually creating and removing

rc is 0. Thus the learner is not creating rc for one of two reasons:

� A
�!C was explained by some other accepted rule every time rc applied. In this

case pc)
S
i p

l
i.

� The rule creation algorithm didn't select the preconditions pc. But with in�nitely

many repetitions of pc
A
�!C, and random precondition selection, pc would be

selected eventually with probability 1.

So RC =) RL.

Now show that RL =) RC.

For any rule rl = pl
A
�!C in RL it must be the case that rl 2 RC.

Assume to the contrary that rl 62 RC, then rl has reliability < �. rl may be created

repeatedly (in an attempt to explain a situation not explained by any rule with reliability

� �). But the probability of accepting a rule with reliability < � is 0 after the algorithm

has made the (�nite) number of mistakes it will make. So RL =) RC.

We can again de�ne the model for probabilistic environments that only contains rules

for changed postconditions.

De�nition 9 A�-complete-model(�) of A�!C in an environment with manifest-causal-

structure(�) contains all the rules with action A and postcondition C that are true in the

environment and that explain situations where C is changed from the previous state.

The convergence theorem for probabilistic environments holds and proves that the rule-

learning algorithm, which only learns about changed conditions, converges to a model that

is predictively-equivalent to the �-complete-model(�) of the environment.

Theorem 4 In an environment with manifest causal structure where the learner uses a

randomized action selection policy and every rule in the �-complete-model(�) of A
�!C is

exercised in�nitely often and every rule not in the �-complete-model(�) of A�!C is violated

in�nitely often, the learning algorithm with the Probabilistic-Rule-Reinforce procedure

will converge to a model of A�!C that is predictively-equivalent to the �-complete-model(�)

of
A
�!C.

To summarize, this section proves that the rule-learning algorithm from Figure 3-2

converges to a good predictive model of environments with manifest causal structure.

3.5 Learning Rules in the Macintosh Environment

This section shows that the rule-learning algorithm is powerful enough to learn the complex

Macintosh Environment. The experiments reported in this section ran on a Quadra 610

Macintosh computer. It is of great interest to this research that the rule-learning algorithm

succeeds in learning a complex environment on a relatively slow computer such as the

63

Quadra. This computer is slow compared with typical computers used for world model

learning research, such as a Connection Machine or a Sparc workstation. The learning

phases are time and space intensive on the Macintosh, but learning the rules for one relation

function typically requires a few hours (e.g., 150000 trial to learn the EXIST relation take

six hours of actual time | as opposed to CPU time). The resource use shows that the rule-

learning algorithm is indeed e�cient, although we cannot compare this algorithm directly

with previous results with di�erent environments.

Evaluation of the empirical success of the rule-learning algorithm includes

� examining the learned world model,

� using the world model to predict, and

� using the world model to achieve a goal.

The following sections present empirical results for each method of evaluation.

3.5.1 The Learned World Model

Due to the complexity of the Macintosh Environment and the low level of the perceptions

there are thousands of valid rules. Later chapters develop concept learning which should

reduce the number of rules in the world model. In this section only rules that are comprised

of direct perceptions are considered.

Since the Macintosh Environment is not deterministic the rule-learning algorithm never

stops creating new rules. We know from Theorem 4 that the set of accepted rules converges

so eventually no new rules are accepted. The rule-learning algorithm is, however, continu-

ally creating new rules to explain those aspects of the environment that are not manifest.

Therefore, the total number of rules remains large after the world model predicts e�ectively.

Many of these rules are on probation as we see in the prediction trace of Figure 3-9.

The learning algorithm can use a maximum of 3000 rules for each relation it learns.

To explain the EXIST relation the learner requires about 500 rules of which about 350

are o� probation (see the prediction trace in Figure 3-9). The TY PE relation is explained

primarily with noaction rules and the learner uses fewer than 100 rules to explain this

relation. The OV , X , and Y relations are binary and thus have many more perceptions to

explain. As a result the number of rules needed to explain these relations is much higher

than the number of rules needed to explain either the EXIST or the TY PE relations.

Experiments show that the learning algorithm uses nearly all 3000 possible rules to learn

these relations. Of the 3000 rules close to 2000 are valid.

The number of rules is too large to list the entire model. Rather, Figure 3-7 lists a

number of interesting learned rules. Section 3.5.2 evaluates the model as a whole through

prediction. Each rule in Figure 3-7 is presented together with the number of times it

predicted successfully, its status (i.e., on or o� probation), and its estimated reliability.

Each rule demonstrate some correlations the agent learned. For example, the �rst rule

indicates that whenever Window 2 is visible so is Window 2's grow-box and the fourth rule

states that a click in Window 1 makes Window 1's active-title-bar present.

3.5.2 Predicting with the Learned World Model

The predictive nature of the rules permits the agent to predict the next state of the world.

Each rule that applies (i.e., its preconditions are true in the current state and its action

64

1. (success 10, probation NIL, reliability 1.0)

EXIST (Window 2) = T ! NOACTION ! EXIST (Window 2 GB) = T

2. (success 22, probation NIL, reliability 1.0)

EXIST (Window 1 ATB) = T

! NOACTION ! EXIST (Window 1 INTERIOR) = T

3. (success 20, probation NIL, reliability 1.0)

NIL ! click-in Window 1 CB ! EXIST (Window 1) = NP

4. (success 39, probation NIL, reliability 1.0)

X (Window 2, Window 1) = 2121

! click-in Window 1 ! EXIST (Window 2 TB) = T

5. (success 13, probation NIL, reliability 1.0)

X (Window 2 ATB, Window 1 TB) = 1212

! click-in Window 1 BUTTON-DIALOG-ITEM Window 2

! EXIST (Window 2 TB) = T

6. (success 1, probation NIL, reliability 1.0)

EXIST (Window 1) = T

! click-in Window 2 ZB ! EXIST (Window 1 INTERIOR) = NP

7. (success 5, probation NIL, reliability 1.0)

EXIST (Window 1 ATB) = T ! NOACTION ! TYPE (Window 1 ATB) = ATB

8. (success 4, probation NIL, reliability 1.0)

EXIST (Window 1 ATB) = T

! NOACTION ! OV (Window 1 CB, Window 1 ATB) = T

9. (success 63, probation NIL, reliability 0.955)

OV (Window 1, Window 2) = T

! click-in Window 2 INTERIOR ! OV (Window 1 Window 2) = F

10. (success 5, probation NIL, reliability 1.0)

Y (Window 1, Window 2 GB) = 1122

! click-in Window 1 TB ! OV (Window 1, Window 2) = T

11. (success 36, probation NIL, reliability 1.0)

NIL ! click-in Window 1 TB

! Y (Window 1 CB, Window 1 INTERIOR) = 1122

12. (success 7, probation NIL, reliability 1.0)

X (Window 2 ATB, Window 1) = 1212

! click-in Window 1 TB ! X (Window 1 ATB, Window 2) = 2121

Figure 3-7: Rules learned in the Macintosh Environment. Notice that all the rules are valid,

but not all of them are the rules we expect or want to �nd. For example, rule 6 would be

correct with no preconditions.

65

Algorithm 5 Predict()

Let predict-perceptions = ;.
For each rule r

if applies(r; current-perceptions; current-action) then

if postcondition(r) is in predict-perceptions

then old-strength = strength of prediction of postcondition(r)

else old-strength = 0.

add postcondition(r) to predict-perceptions with strength

MAX(reliability(r),old-strength).

Repeat until no new perceptions are added

For each noaction rule r

if applies(r; predicted-perceptions;noaction) then

if postcondition(r) is in predict-perceptions

then old-strength = strength of prediction of postcondition(r)

else old-strength = 0.

add postcondition(r) to predict-perceptions with strength

MAX(reliability(r),old-strength).

For each relation rel in the current-perceptions

if there is no value for rel in predict-perceptions

add current value of rel to predict-perceptions with strength 1.

Figure 3-8: The Predict Algorithm

is the current action) predicts that its postcondition will be true in the next state. The

prediction has a prediction-strength which is equal to the reliability of the rule that

makes the prediction. If more than one rule predicts a condition then the largest rule

reliability becomes the prediction-strength of this condition. The agent also assumes that

any relation that is not given a value by some rule retains its current value. This prediction

algorithm is shown in Figure 3-8.

For each relation the prediction algorithm can predict

� the correct value,

� the correct value and other values,

� some number of incorrect values, or

� no predicted value.

To evaluate the prediction at every trial the algorithm compares the predicted perceptions

with the new perceptions. When the algorithm predicts the correct value for a relation, we

say the value is found. If any incorrect values are predicted the corresponding prediction

strengths are added (over all incorrect values). These are prediction mistakes. If a relation

in the new perceptions has no predicted value, we say it was missed. The total prediction

error for each trial is the number of missed perceptions plus the sum of the strengths of the

prediction mistakes.

The total prediction error of one trial is not a good measure of the world model's

predictive ability. The model can predict perfectly for twenty trials and be surprised by

66

trial 6240 rule count = 469 (on probation 134) mysteries 0

Prediction: found relations 8, mistakes 0.0, missed 0, Total 8 :

Smoothed Error 0.81

trial 6241 rule count = 469 (on probation 134) mysteries 0

Prediction: found relations 12, mistakes 0.0, missed 0, Total 12 :

Smoothed Error 0.81

trial 6242 rule count = 469 (on probation 134) mysteries 0

Prediction: found relations 7, mistakes 0.0, missed 0, Total 7 :

Smoothed Error 0.81

trial 6243 rule count = 469 (on probation 134) mysteries 0

Prediction: found relations 7, mistakes 0.0, missed 0, Total 7 :

Smoothed Error 0.74

Figure 3-9: A trace of a few trials in the Macintosh Environment.

a rare event that it cannot predict on the twenty-�rst trial. For example, if Window 1

completely hides Window 2 and the agent clicks parts of Window 1 or the background for

20 trials the agent may predict perfectly. Suppose that on the twenty-�rst trial the agent

clicks the close-box of Window 1. The agent cannot predict the appearance of Window 2

so the prediction error in this trial is high. Therefore, to give a quantitative value to the

world model's predictive ability we look at the average error of a window of 100 prediction

trials. Call this the smoothed error.

Figure 3-9 shows a trace of a small number of trials. The agent is learning rules to

explain the EXIST relation only. It therefore predicts relations for the EXIST relation

only. Recall that to save space the agent attempts to explain one relation function at a

time. The trace in Figure 3-9 is late in the learning phase for the EXIST relation. For

each trial the total number of rules, the number of rules on probation, and the number of

mysteries are shown as well as the prediction values. The agent has a large number of valid

rules to explain the EXIST relation (speci�cally 470� 135 = 335 valid rules). As you can

see the agent makes few prediction mistakes and the smoothed prediction error is low (near

:8 averaged errors per trial compared with near 3:5 averaged errors per trial with no learned

rules).

Figure 3-10 shows a graph of the smoothed error values as the agent learns about the

EXIST relation. The �gure compares the error while learning with the smoothed error

when the agent has no rules (i.e., it always predicts no change). After an initial learning

phase the learner predicts better and continues to improve. It �nally reaches an error rate so

low that it can be attributed to non-determinism of the environment. Since the agent only

learns noaction rules in the �rst 6000 trials there is an obvious change in the graph at that

time. Until trial 6000 there is no apparent improvement in prediction because noaction

rules alone cannot be used to predict. Later prediction exhibits a more typical learning

curve.

Similar prediction results are shown for the TY PE and OV relations in Figures 3-11 and

3-12 respectively. The agent uses the model it has already learned for the EXIST relation

67

Figure 3-10: A graph of the smoothed error values as the agent learns the EXIST relation

(the black line) compared with the smoothed error for an empty model (the gray line).

To make this graph the prediction errors that the agent makes are further smoothed by

averaging a window of 1000 trials. The agent is learning noaction rules only in the �rst

6000 trials.

Figure 3-11: A graph of the smoothed error values as the agent learns the TY PE relation

(the black line) compared with the smoothed error for an empty model (the gray line).

To make this graph the prediction errors that the agent makes are further smoothed by

averaging a window of 1000 trials. The agent is learning noaction rules only.

68

Figure 3-12: A graph of the smoothed error values as the agent learns the OV relation (the

black line) compared with the smoothed error for an empty model (the gray line). To make

this graph the prediction errors that the agent makes are further smoothed by averaging a

window of 1000 trials. The agent is learning noaction rules only in the �rst 5000 trials.

when learning both the TY PE and the OV relations. The agent learns the TY PE relation

very quickly since once the EXIST relation is explained noaction rules are su�cient

to explain the TY PE relation. The OV relation is more di�cult to learn than either

the TY PE or the EXIST relations because it has two arguments and thus there are

many perceptions of the OV relations and, as we can see in Figure 3-12, a high prediction

error rate before learning. The agent learns very quickly at �rst (using noaction rules).

Further progress is slower. Traces of prediction for the X and Y relations are similar to the

prediction graph for learning the OV relation. The prediction error when learning the X

and Y relations is show in Figures 3-13 and 3-14 respectively.

3.5.3 Achieving a Goal

In this section we describe how the agent uses the learned world model to achieve a goal. The

goal-oriented action selection implemented for this thesis is a simple procedure which does

not take advantage of all the known techniques for goal-oriented action selection. We use it

merely to show that the learned model can be used to achieve goals. This action-selection

algorithm performs standard backward chaining using the rules in the model. Starting from

the goal it �nds a rule that has the goal as postcondition. It makes the preconditions of the

rule sub-goals and recursively tries to achieve these sub-goals until its goal is true in the

current environment. Then the agent takes the resulting series of actions and re-plans if

necessary (e.g., when an incorrect rule is used and the resulting situation is not the expected

situation).

When the agent | beginning in the screen situation of Figure 3-15| tries to achieve the

goal OV (Window 1;Window 2) = T it performs the action leading to the screen situations

in Figure 3-16 (i.e., a click in the button for Window 2). Then it clicks in Window 1's

interior and reaches the desired goal situation in Figure 3-17. The agent used the following

69

Figure 3-13: A graph of the smoothed error values as the agent learns the X relation.

To make this graph the prediction errors that the agent makes are further smoothed by

averaging a window of 1000 trials. The agent is learning noaction rules only in the �rst

5000 trials.

Figure 3-14: A graph of the smoothed error values as the agent learns the Y relation.

To make this graph the prediction errors that the agent makes are further smoothed by

averaging a window of 1000 trials. The agent is learning noaction rules only in the �rst

5000 trials.

70

Figure 3-15: Starting situation for an agent with goal OV (Window 1;Window 2) = T

Figure 3-16: Intermediate situation agent with goal OV (Window 1;Window 2) = T

71

Figure 3-17: Final situation for an agent with goal OV (Window 1;Window 2) = T | goal

achieved!

rules to achieve its goal:

(success 35, probation NIL, reliability 0.972)

EXIST (Window 1 ATB) = T -->

click-in Window 1 BUTTON-DIALOG-ITEM Window 2 -->

OV (Window 1 INTERIOR, Window 2) = F

(success 3, probation NIL, reliability 1.0)

OV (Window 1 INTERIOR, Window 2) = F -->

click-in Window 1 INTERIOR --> OV (Window 1, Window 2) = T

3.6 Discussion

The previous section showed that the rule-learning algorithm learns a world model that

captures knowledge of the environment well enough to predict and plan. Several questions

of interest arise about the learning algorithm: how does the algorithm cope with a new

environment or a changing environment, how much time does the learning algorithm spend

creating invalid rules, and how do mysteries a�ect the speed of learning? These questions

are discussed in the following sections.

3.6.1 Learning in New or Changing Environments

The experiments in Section 3.5 showed that the rule-learning algorithm learns a good world

model of an environment with Window 1 and Window 2 since the experiments were all

72

conducted in environments with exactly those two windows. Suppose now that an agent has

a world model which it learned in such an environment (with Window 1 and Window 2).

When the agent encounters a somewhat di�erent environment containing three windows

(Window 1, Window 2, and Window 3), how useful will its world knowledge be and how

will the learning algorithm react?

Obviously a world model that was learned with a two window environment is incomplete

and sometimes incorrect in a three window environment. For example, in a two window

environment, a rule stating that if one window is active and the other is present then

closing the active window will make the second window active, is valid. In a three window

environment this rule is not valid since either the second or the third window can become

active. Thus, in changed environments, the world model contains some rules that are still

valid, but contains some rules that are no longer valid and is missing some valid rules.

The rule-learning algorithm can cope with such a change well because this algorithm

continues learning inde�nitely. The rules that remain valid will not be removed and the

algorithm will continue to use them for prediction. Thus the world model starts with more

knowledge in a changing environment than in a completely new environment. The rules in

the model that are no longer valid will fail frequently in the changed environment and the

algorithm will remove them. Most importantly, since the learning algorithm will once again

encounter unexplained events, it will create new rules to explain these events. The world

model will adjust after a learning phase to an accurate model of the changed environment.

This learning algorithm, therefore, is adaptive.

A somewhat di�erent question is how the agent reacts to a new environment, e.g., an

environment containing two windows | Window 4 and Window 5 | that are unfamiliar

to the agent. In this case the speci�c rules learned by the rule-learning algorithm in this

section are not useful. These rules state facts about the speci�c windows, Window 1 and

Window 2, that it encountered during learning. This knowledge cannot be transferred to

other windows, so the rule-learning will have to learn about the new environment with

no prior knowledge. Chapter 5 presents a rule-generalization algorithm that address the

problem of rule specialization.

3.6.2 Time Spent Creating Rules

We know that the rule-creation algorithm merely guesses rules and rule-evaluation deter-

mines if these rules are valid. Therefore many of the rules created are bad. We are interested

in determining how much time the algorithm spends creating bad rules early and late in

the learning process.

We do not know if a rule is good or bad when it is created. Therefore, we must use

the number of rules removed for evidence of how many bad rules are created. Consider the

following experiment. The rule-learning algorithm is learning in a two window environment.

It is focusing on the EXIST relation only. It learns for 16000 trials of which the �rst 5000

are spend learning noaction rules.

We count the number of rules created and removed in an early interval (trials 5000 {

6000) and a late interval (trials 15000 { 16000). In the early interval 512 rules are created and

276 rules are removed. In the late interval 177 rules are created and 159 rules are removed.

We can see the improvement to the world model from the reduced number of rules created.

Furthermore, the absolute number of bad rules created is smaller later from this evidence

(159 rules removed later compared with 276 rules removed early). On the other hand the

probability that a rule is bad is higher later in learning (159=177 � :9 compared with

73

Figure 3-18: A graph of the smoothed error values as the agent learns the EXIST relation

with mysteries (the black line) compared with the smoothed error when the error learns

without mysteries (the gray line). To make this graph the prediction errors that the agent

makes are further smoothed by averaging a window of 1000 trials.

276=512 � :54) which is reasonable since a higher percentage of the surprising situations

cannot be explained when the world model is fairly good.

This experiment shows that, as we expect, as the world model improves it has fewer

situations to explain and therefore it creates fewer rules. Likewise, it creates fewer bad rules

with time, although a higher percentage of the rules created are bad.

3.6.3 Learning with Mysteries

We discussed the use of mysteries to learn about rare events in Section 3.3.2. Mysteries

improve learning because re-playing rare events increases the probability of creating rules

that explain the mysteries. Thus the main di�erence between learning with and without

mysteries is that a few speci�c rules, which explain the mysteries are created faster when

mysteries are used.

This improvement is easy to measure if the complete set of rules making up the world

model is known and can be encoded. In this case the learned model can be compared with

the \perfect" model and the number of correct rules can be measured directly. If we can

count the number of correct rules we can compare the percentage of good rules learned with

and without mysteries.

Experiments in a grid environment, which we discussed briey in Chapter 2, showed

that using mysteries the learning algorithm consistently �nds more of the correct rules than

it �nds without mysteries. Unfortunately, in the Macintosh Environment, listing the perfect

model is not realistic or even possible. Furthermore, the Macintosh Environment, as we

discussed in Section 3.3.2, does not have rare events. Therefore the bene�t of using mysteries

is not as clearly evident in this environment. To support the claim that mysteries speed

up learning we can examine graphs that compare prediction with and without mysteries.

Figures 3-18 and 3-19 compare prediction of the EXIST and OV relations with and without

mysteries. Both these graphs demonstrate a small speedup early in the learning process.

74

Figure 3-19: A graph of the smoothed error values as the agent learns the OV relation with

mysteries (the black line) compared with the smoothed error as the agent learns without

mysteries (the gray line). To make this graph the prediction errors that the agent makes are

further smoothed by averaging a window of 1000 trials. The agent is learning noaction

rules only in the �rst 5000 trials.

The apparent prediction improvement in any one of these graphs is small and not convincing

on its own. Since the graphs are consistent this evidence indicates that mysteries improve

learning even in the Macintosh Environment.

3.7 Related Approaches to Rule Learning

This section describes a select number of related works that are directly related to learning

rule based causal world models. The approaches to learning as well as the complexity of

the learned environments are compared.

Early work in theoretical machine learning showed that �nite automata are learnable

from queries and counter-examples (Angluin 1987). In other words there is an algorithm

that learns a world model in any deterministic �nite automaton environment. The structure

of this model is not a set of rules, but a �nite automaton is easily translated to a set of

rules. For every transition from state s1 to state s2 on action a make the rule s1 ! a !
s2. The limitations of this research compared with the issues in this thesis are the severe

restriction of environment types and the need for counterexamples which are not available

to the autonomous agent in this research.

Dean et al. (1992) address autonomous learning of deterministic �nite automata en-

vironments with noise. Like Angluin (1987), the algorithms are not as general as the

rule-learning algorithm in this chapter because the learning algorithm assumes that the

underlying environment is a deterministic �nite automaton.

Rivest & Schapire (1990) explore autonomous learners in a �nite automata environment

with hidden state. In other words the underlying environment is deterministic, but the

agent has only partial perceptions of the state. Rivest & Schapire (1990) give an algorithm

that learns the �nite automaton (modulo states that cannot be distinguished) from exper-

75

imentation. This research address the speci�c problem of hidden information | a problem

that this thesis avoids in favor of exploring more complex environments.

Drescher (1989) develops the schema mechanism which is most closely related to the

work in this thesis. The structure of the rules in the world model is based on Drescher's

schemas but simpli�ed somewhat. The main di�erence between the schema mechanism and

this thesis is that Drescher's work focuses on learning hidden state, whereas the work in

this thesis concentrates its e�ort on learning the part of the environment that is easy to

learn.

There are illuminating di�erences between the schema generating algorithm and the

rule-learning algorithm in this thesis. The primary di�erence is that schemas are never

removed. Once a schema is generated it can improve upon itself by creating (spinning-o�)

new schemas, but it is not removed even if it has proved to be invalid. This strategy relies

upon clever schema generation procedures which collect a great deal of statistics about the

relevancy of potential preconditions and postconditions. It also requires a great deal of

memory and computational resources. The rule-learning algorithm in this thesis, on the

other hand, guesses potential rules on demand, when unexplained situations occur. The

\thinking" goes into choosing which rules to remove.

Shen (1993) presents a di�erent approach to learning rule-based world models of deter-

ministic environments. This work concentrates on �nding general explanations for perceived

e�ects. We might say that the learning algorithm generalizes �rst and asks questions later.

Rules are typically over-generalized when they are created and the algorithm makes them

more speci�c with experience. The rule-learning algorithm of this thesis, on the contrary,

learns as much speci�c information as possible �rst. It generalizes when it has enough

speci�c knowledge to make a good guess at the general concept, which mimics what people

typically do.

3.8 Summary

This chapter presented a rule-learning algorithm that uses simple rule-creation strategies

coupled with reliable statistical methods of separating good and bad rules. The rule-learning

algorithm is proven to converges to a good predictive model in environments with manifest

causal structure. An agent uses this algorithm to learn the Macintosh Environment and

the empirical results of these experiments show e�ective learning of a realistic and complex

environment.

76

Chapter 4

Correlated Perceptions as New

Concepts

The previous chapter described an algorithm that excels at �nding correlations in the en-

vironment. For any environment conditions and action the rule-learning algorithm makes

rules with every consistent resulting condition in the environment as a postcondition. In

many environments there is some perceptual redundancy such as co-occurring perceptions

or a perception that is always true when another perception is true. The algorithm in this

chapter learns new concepts by �nding redundant or correlated perceptions. It changes

the world model to use the newly learned concepts resulting in a world model with fewer

rules that are closer both to the \natural" causes of e�ects in the environment (rather than

perceptions that are correlated with the e�ect) and to the way people think about the

environment.

Consider the event of bringingWindow 1 to the foreground in Figure 4-1. In the previous

state Window 1 is behind Window 2 and is not active. The action is a click-in Window 1's

interior. The result is that Window 1 is active, i.e., Window 1 rectangle exists, Window 1's

interior exists, Window 1's active-title-bar exists, Window 1's close-box exists, etc. For

each of these resulting perceptions the rule-learning algorithm creates a rule with the same

preconditions and action. These rules are all valid. They express true correlations in the

environment but not necessarily the most relevant cause for the e�ect. The most concise

description of all the above e�ects is that the perceived rectangles are related to each other

by being parts of a window. The fact that the window exists and is active is the \true"

cause for the perceived parts of the window.

Once the agent learns the correlation in the perceptions one rule su�ces to describe the

correlated e�ects, such as the e�ects of bringing Window 1 to the foreground. In addition to

expressing the causes, rather than correlations, the world model is more concise. It contains

fewer rules, and these rules express e�ects in a way that is easier for people to understand

because it is more similar to people's descriptions of the environment.

This chapter presents an algorithm that learns new relations from correlated percep-

tions. The algorithm uses noaction rules learned by the rule-learning algorithm and con-

verts noaction rules to a directed graph of correlated perceptions. The sets of correlated

perceptions are strongly connected components in the digraph. Each strongly connected

component collapses to a single node which becomes a new relation or new object (or both).

Links between the collapsed nodes guide the creation of perceptions with new relations and

new objects. Section 4.3 describes in detail the algorithm to collapse correlations with

77

Figure 4-1: Macintosh screen situations with overlapping windows

78

examples and results from the Macintosh Environment.

New relations and objects replace the underlying correlated perceptions in rules. Like

any other rules the algorithm evaluates rules with new relations and objects and uses them

to predict. Section 4.4 describes algorithms to create and use rules with new relations and

objects.

4.1 Completely Correlated Perceptions are Important

The concept-learning algorithm in this chapter relies on a single crucial observation |

perceptions that always occur together indicate a deeper structure in the environment.

The agent should be aware of any correlation among perceptions. For example, when one

perceptions is correlated with another such that the perception is true whenever the other

perception is true, the agent gains a great deal of predictive power from knowing this

correlation. If the agent knows that some perceptions are completely correlated (i.e., they

always occur together) it can, of course, use this knowledge to predict. We observe, however,

that the agent can extract much more information from completely correlated perceptions.

Usually when perceptions are completely correlated in an environment, there is a reason

for the correlation. There is some underlying cause for all of the correlated perceptions

which the agent may not yet grasp. The completely correlated perceptions occur because

of the underlying cause of the events that follow the agent's action.

For example, in the Macintosh Environment, when the agent clicks in a window several

perceptions appear together. Among them are the perceptions that the active-title-bar,

close-box, and zoom-box are visible. Viewing the e�ects of the action as causing these

perceptions is super�cial. A more accurate account of the events is that clicking in the

window makes the window active and when a window is active the active-title-bar, close-

box, and zoom-box are visible. The revised explanation of the e�ects of the action uses the

concept of an active window.

In this chapter the agent �nds concepts, such as the concept of an active window, from

completely correlated perceptions. We assume that whenever there are perceptions that

always occur together there is an underlying cause for the correlation. The agent de�nes the

underlying cause to be a new concept that expresses the cause of the completely correlated

perceptions.

In the terminology of the world model, a new concept can be either a new object or a

new relation on a new object. For example, a window rectangle and its interior rectangle

always occur together. The perceptions that these two rectangles are visible de�ne a new

object \window". On the other hand, the concept that a window is active is a new relation,

\active," on a new object, \window."

Section 4.3 presents an algorithm to �nd new relations and new objects. First an

algorithm to �nd completely correlated perceptions is described. The completely correlated

perceptions indicate that new concepts should be de�ned. Next we decide which concepts

become new objects and which become new relations on new objects. Before we look at the

algorithm in detail, let us discuss the representation for new concepts in the world model.

4.2 Representing New Relations and Objects

The generality of the relation representation allows new relations to have the same form

that perceptual relations have. When the learning algorithm creates a new relation it

79

makes a unique symbol for this relation. Like the unique symbol EXIST , a new relation

is represented by a symbol NEWRELATIONxxx where xxx is a unique number assigned

by the algorithm. The learning program allows a human observer to name the new relation.

This name has no meaning for the learner but is useful for people trying to decipher the

learned world model. Similarly when the learning algorithm creates a new object it makes

a unique symbol NEWOBJxxx which the user can name.

A new relation (such as ACTIVE1) on a new object (such as NEW-WINDOW1) is

similar to a perception

ACTIVE1(NEW-WINDOW1) = T:

Like any other object the learner can have the pseudo-perception of the existence of a new

object, such as EXIST (NEW-WINDOW1) = T . The rule-learning algorithm as well as

prediction and action selection routines can use new relations just as it would use perceptions

as part of rules.

The next section describes when and how the learning algorithm creates new relations

and new objects.

4.3 Algorithm to Collapse Correlated Perceptions into New

Relations and Objects

The algorithm to collapse correlations has two parts. The �rst �nds the correlated percep-

tions from the noaction rules and the second uses the correlations to create new relations

and new objects.

To �nd the completely correlated perceptions the algorithm relies on the noaction

rules, since these rules state correlations of the form \if the precondition is true then the

postcondition is true." Ideally the set of noaction rules would be complete, i.e., it would

contain every valid noaction rule prior to learning new concepts. In this case the concept

learning algorithm would be able to �nd all the correlated perceptions. More realistically,

given the nature of the rule-learning algorithm, the set of noaction rules will be almost

complete when the algorithm collapses correlations. Therefore it is important for the agent

to wait until the set of noaction rules learned contains as many valid rules as possible

prior to collapsing correlations. Since the agent cannot know what percentage of the valid

rules it has learned, it waits until a speci�ed number of trial has passed. This number of

trials is predetermined by a parameter.

It is best for the algorithm to learn noaction rules exclusively for a �xed number of

trials and to collapse correlations immediately after learning the noaction rules. Rules with

noaction must be learned �rst to best achieve their function | preventing the creation

of rules with correlated e�ects. Furthermore, the algorithm uses its time more e�ciently

if it collapses correlated perceptions before creating any rules (with actions) because after

learning noaction rules it will have fewer perceptions to explain.

The agent can execute the algorithm for collapsing correlations repeatedly. Repeating

this procedure may be useful if the algorithm �nds additional valid noaction rules. The

structure of the resulting new relations and new objects may be hierarchical (containing

previously created new relations and objects as well as basic perceptions). This structure can

be di�cult to understand and can introduce redundancy instead of removing redundancy.

The two parts of the concept-learning algorithm that collapses correlation | �nding

80

completely correlated perceptions and creating new relations and new objects | are pre-

sented in the two following sections.

4.3.1 Finding Correlated Perceptions From noaction Rules

The algorithm to �nd correlated perceptions has as input a set of noaction rules. A

noaction rule

precondition ! noaction ! postcondition

means that whenever the precondition is true the postcondition is also true. Therefore

the noaction rules can be converted to a directed graph where the nodes correspond to

perceptions or sets of perceptions and for each noaction rule there is a link in the graph

from the precondition to the postcondition.

For example, consider the set of noaction rules in Figure 4-2. These rules are a subset of

the noaction rules learned for the EXIST relation that deal with Window 1. The rules

in Figure 4-2 are converted to the directed graph in Figure 4-3. Note, for example, a link

from EXIST (Window 1 CB) = T to EXIST (Window 1 ATB) = T corresponding to the

�rst rule

EXIST (Window 1 CB) = T ! noaction ! EXIST (Window 1 ATB) = T .

To complete the algorithm for �nding correlations note that if we have the rules

EXIST (Window 1 ATB) = T ! noaction ! EXIST (Window 1 CB) = T

and

EXIST (Window 1 CB) = T ! noaction ! EXIST (Window 1 ATB) = T

then the perceptions EXIST (Window 1 ATB) = T and EXIST (Window 1 CB) = T are

completely correlated. That is, they always occur together. In the corresponding graph the

above rules make a cycle of two nodes. The graph can also have longer cycles and structures

of multiple cycles of correlated perceptions. In short, completely correlated perceptions show

up in the correlation graph as strongly connected components. There are known algorithms

to �nd strongly connected components of a graph e�ciently (linear time in the number of

nodes of the graph) (Baase 1988).

Figure 4-4 outlines the algorithm for �nding correlated perceptions. Figure 4-5 shows the

strongly connected components for the correlation graph. Note that component 1 contains

perceptions that are true when Window 1 is active and component 3 contains perceptions

that are true whenever Window 1 is present.

4.3.2 Creating New Relations and New Objects

The algorithm to collapse correlated perceptions is shown in Figure 4-6. The algorithm looks

for a link between two components, such as the link between component 1 and component 3

in Figure 4-5. Both components must contain at least two correlated perceptions so that

the algorithm will not create redundant new objects and new relations.

It is natural to think of the meaning of links in the component graph as attribute-of

links. Consider a link a! b. Whenever a is present so is b, but when b is present a is not

necessarily present. Therefore, a is one of several possible attributes of b. An attribute of

81

1. (success 28, probation NIL, reliability 1.0)

EXIST (Window 1 CB) = T ! NOACTION ! EXIST (Window 1 ATB) = T

2. (success 45, probation NIL, reliability 1.0)

EXIST (Window 1) = T ! NOACTION ! EXIST (Window 1 INTERIOR) = T

3. (success 28, probation NIL, reliability 1.0)

EXIST (Window 1 ATB) = T

! NOACTION ! EXIST (Window 1 INTERIOR) = T

4. (success 28, probation NIL, reliability 1.0)

EXIST (Window 1 ATB) = T ! NOACTION ! EXIST (Window 1) = T

5. (success 28, probation NIL, reliability 1.0)

EXIST (Window 1 ATB) = T ! NOACTION ! EXIST (Window 1 ZB) = T

6. (success 28, probation NIL, reliability 1.0)

EXIST (Window 1 ATB) = T ! NOACTION ! EXIST (Window 1 CB) = T

7. (success 28, probation NIL, reliability 1.0)

EXIST (Window 1 ATB) = T ! NOACTION ! EXIST (Window 1 GB) = T

8. (success 4, probation NIL, reliability 1.0)

EXIST (Window 1 GB) = T ! NOACTION ! EXIST (Window 1) = T

9. (success 45, probation NIL, reliability 1.0)

EXIST (Window 1 INTERIOR) = T

! NOACTION ! EXIST (Window 1) = T

10. (success 16, probation NIL, reliability 1.0)

EXIST (Window 1 TB) = T ! NOACTION ! EXIST (Window 1) = T

Figure 4-2: Some noaction rules for the EXIST relation on Window 1

82

EXIST (Window 1 CB) = T

EXIST (Window 1 INTERIOR) = T

EXIST (Window 1 BUTTON-DIALOG-ITEM Window 2) = T

EXIST (Window 1 ATB) = T

EXIST (Window 1 ZB) = T

EXIST (Window 1) = T

EXIST (Window 1 TB) = NP

EXIST (Window 1 GB) = T

EXIST (Window 1 TB) = T

EXIST (Window 1 CB) =NP

EXIST (Window 1 ZB) = NP

EXIST (Window 1 ATB) = NP

Figure 4-3: The correlation graph for the noaction rules for the EXIST relation on

Window 1

83

Algorithm 6 Find-Correlations()

[Make correlation graph from noaction rules]

For each noaction rule r

make a directed link from precondition(r) to postcondition(r)

Find strongly connected components in the correlation graph

Figure 4-4: Algorithm to �nd correlated perceptions

an object becomes a relation on the object in the representation in this thesis. For example,

when a is present, the relation a(b) = T shows that the attribute a of b is true.

In Figure 4-5, component 1 is an attribute of component 3, and component 2 is an-

other attribute of component 3. The algorithm, therefore, collapses component 3 to a

new object, which I name NEW-WINDOW1 for clarity when examining the world model.

Component 1 becomes a new relation named ACTIVE1. Figure 4-7 shows a trace of the

Find-Correlations and Make-New-Relations algorithms with the noaction rules for

the EXIST relation as input. The algorithm creates the new relation ACTIVE1 and the

new object NEW-WINDOW1 as well as the corresponding relation ACTIVE2 and object

NEW-WINDOW2.

We say that the new object NEW-WINDOW1 exists whenever the perceptions of com-

ponent 3 are true. To express this de�nition the algorithm makes a noaction rule

EXIST (Window 1) = T ^EXIST (Window 1 INTERIOR) = T

! noaction ! EXIST (NEW-WINDOW1) = T .

Similarly we say that the attribute ACTIVE1 of NEW-WINDOW1 is true whenever the

perceptions of component 1 are true. Note that the structure of the graph implies that

whenever the perceptions of component 1 are true so are the perceptions of component 3.

Thus the rule

EXIST (Window 1 ATB) = T ^EXIST (Window 1 CB = T

^EXIST (Window 1 ZB) = T)

! noaction ! ACTIVE1(NEW-WINDOW1) = T

is su�cient to de�ne the new relation ACTIVE1(NEW-WINDOW1).

The �nal aspect of creating new objects is recognizing parts of the new objects. When

the algorithm creates a new object it recognizes that any perception in the component that

states that an object exists indicates that the object is part of the new object. For example,

the perceptions in component 3 indicate thatWindow 1 andWindow 1 interior exist. These

objects are recognized as parts of the new object NEW-WINDOW1. These relationships

are captured in the rules

EXIST (Window 1) = T ! noaction !
PART-OF(Window 1, NEW-WINDOW1) = T

and

EXIST (Window 1 INTERIOR) = T ! noaction !
PART-OF(Window 1 INTERIOR, NEW-WINDOW1) = T .

The next section describes how new relations and new objects are incorporated into the

rule-learning algorithm and as part of the world model.

84

EXIST (Window 1 CB) = T
EXIST (Window 1 ATB) = T

EXIST (Window 1 ZB) = T

EXIST (Window 1 BUTTON-DIALOG-ITEM Window 2) = T

EXIST (Window 1) = T
EXIST (Window 1 INTERIOR) = T

EXIST (Window 1 TB) = NP

EXIST (Window 1 GB) = T

EXIST (Window 1 TB) = T

EXIST (Window 1 ATB) = NP

EXIST (Window 1 CB) = NP

EXIST (Window 1 ZB) = NP

component 1

component 2

component 3

Figure 4-5: The component graph for the EXIST relation on Window 1

85

Algorithm 7 Make-New-Relations()

For each strongly connected component, c, in the correlation graph

if c contains more than 1 perception then

[make a new relation]

Make a symbol for the new relation function | new-rel.

Prompt the user for a name for the new relation.

For each component c2 such that the component graph

contains a link c �! c2

if c2 contains more than 1 perception then

[make a new object]

Make a symbol for the new object | new-obj.

Prompt the user for a name for the new object.

Make the de�ning noaction rule r for the new object

Set precondition(r) = perceptions in c2

Set postcondition(r) = EXIST (new-obj) = T

Insert r into the rule set

[De�ne the parts of the new object]

For every precondition p = exist(o)t in c2

Make noaction rule r with precondition(r) = p and

postcondition(r) = part-of(o; new-obj) = T

Insert r into rule set

Make the de�ning noaction rule r for the new relation

Set precondition(r) = perceptions in c

Set postcondition(r) = new-rel(new-obj) = T

Insert r into the rule set

Figure 4-6: Algorithm to collapse correlated perceptions to new relations and new objects.

86

? (rule-table-count)

366

? (find-correlations)

(EXIST (Window~1 ZB) = T, EXIST (Window~1 CB) = T, EXIST (Window~1 ATB) = T)

"Enter name for relation: " active1

(EXIST (Window~1) = T, EXIST (Window~1 INTERIOR) = T)

"Enter name for object: " NEW-WINDOW1

(EXIST (Window~2 ATB) = T, EXIST (Window~2 CB) = T, EXIST (Window~2 ZB) = T)

"Enter name for relation: " active2

(EXIST (Window~2 INTERIOR) = T, EXIST (Window~2) = T, EXIST (Window~2 GB) = T)

"Enter name for object: " NEW-WINDOW2

NIL

? (replace-perceptions-in-rules)

NIL

? (rule-table-count)

325

Figure 4-7: A trace of an execution of the Find-Correlations andMake-New-Relations

algorithms in the Macintosh Environment

87

4.4 Rules with New Relations and Objects

The advantage of a general perceptual representation is that when the agent adds new re-

lations and new objects it does not need to change algorithms that deal with perceptions

and rules. New relations on new objects, such as ACTIVE1(NEW-WINDOW1) = T ,

and EXIST relations on new objects, such as EXIST (NEW-WINDOW1) = T , are

true in the current state whenever the preconditions of the rules that de�ne the new

relations are true. For example, ACTIVE1(NEW-WINDOW1) = T is true whenever

EXIST (Window 1 ATB) = T , EXIST (Window 1 CB) = T , and

EXIST (Window 1 ZB) = T are all true. Like external perceptions the new relations are in

the list of current perceptions. These relations are always added to the current perceptions

immediately after the agent perceives the environment.

Also like any external perception, a new relation or an EXIST relation on a new

object can be part of a rule's precondition or postcondition. For example, in the Macintosh

Environment

ACTIVE1(NEW-WINDOW1) = T ! noaction ! EXIST (Window 1 ATB) = T

and

() ! click-in Window 1 ! ACTIVE1(NEW-WINDOW1) = T

are valid rules with new relations.

The next three sections describe the algorithm that creates such rules, how it evaluates

these rules and how it predicts from these rules.

4.4.1 Creating Rules with New Relations and Objects

When the learning algorithm creates new relations it �rst replaces collapsed perceptions in

existing rules by the new relation. For example, the rule

EXIST (Window 1 ATB) = T ! noaction ! EXIST (Window 1) = T

becomes

ACTIVE1(NEW-WINDOW1) = T ! noaction ! EXIST (NEW-WINDOW1) = T .

The algorithm replaces collapsed perceptions in all the existing rules, not only the noaction

rules.

When creating additional rules the algorithm does not use collapsed perceptions. Rather

it uses the new relations. A number of learned rules with new relations are shown in

Figure 4-8. Recall that in addition to the example of learning the concepts ACTIVE1 and

NEW-WINDOW1 used in this chapter, the algorithm learns the similar ACTIVE2 and

NEW-WINDOW2 concepts, which appear in some of the rules in Figure 4-8.

The set of rules that results from replacing collapsed perceptions is smaller than the

original set. For example, one rule

() ! click-in Window 1 ! ACTIVE1 (NEW-WINDOW1) = T

replaces the three rules

() ! click-in Window 1 ! EXIST (Window 1 ATB) = T

88

1. (success 8, probation NIL, reliability 1.0)

ACTIVE2 (NEW-WINDOW2) = T ! NOACTION ! EXIST (Window 1 ZB) = NP

2. (success 8, probation NIL, reliability 1.0)

ACTIVE2 (NEW-WINDOW2) = T ! NOACTION ! EXIST (NEW-WINDOW2) = T

3. (success 24, probation NIL, reliability 1.0)

NIL ! click-in Window 1 INTERIOR ! EXIST (NEW-WINDOW1) = T

4. (success 9, probation NIL, reliability 1.0)

NIL ! click-in Window 1 INTERIOR ! ACTIVE1 (NEW-WINDOW1) = T

5. (success 36, probation NIL, reliability 1.0)

NIL ! click-in Window 1 CB ! EXIST (NEW-WINDOW1) = NP

6. (success 11, probation NIL, reliability 1.0)

X (Window 1, Window 2) = 1212

! click-in Window 1 CB ! ACTIVE2 (NEW-WINDOW2) = T

7. (success 21, probation NIL, reliability 1.0)

NIL ! click-in Window 1 TB ! ACTIVE1 (NEW-WINDOW1) = T

8. (success 39, probation NIL, reliability 1.0)

NIL ! click-in Window 2 ! ACTIVE2 (NEW-WINDOW2) = T

9. (success 11, probation NIL, reliability 1.0)

ACTIVE1 (NEW-WINDOW1) = T

! click-in Window 2 INTERIOR ! EXIST (Window 1 TB) = T

Figure 4-8: Examples of a few learned rules with new relations and objects

89

trial 758 rule count = 354 (on probation 157) mysteries 0

Prediction: found relations 12, mistakes 0.0, missed 0, Total 12 :

Smoothed Error 0.83

trial 759 rule count = 354 (on probation 157) mysteries 0

Prediction: found relations 12, mistakes 0.0, missed 0, Total 12 :

Smoothed Error 0.83

trial 760 rule count = 354 (on probation 157) mysteries 0

Prediction: found relations 12, mistakes 0.0, missed 0, Total 12 :

Smoothed Error 0.78

trial 761 rule count = 354 (on probation 157) mysteries 0

Prediction: found relations 5, mistakes 0.0, missed 4, Total 9 :

Smoothed Error 0.82

Figure 4-9: A trace of a few predictive trials for the EXIST relation in the Macintosh

Environment. The world model contains some new relations and objects.

() ! click-in Window 1 ! EXIST (Window 1 CB) = T

and

() ! click-in Window 1 ! EXIST (Window 1 ZB) = T .

In Figure 4-7 we can see that the number of rules in the world model after replacing the

collapsed perceptions with the new relations is smaller than the original number of rules.

Furthermore, the rule above describes the concept of an active window | a key concept in

the Macintosh Environment.

4.4.2 Evaluating Rules with New Relations and Objects

There is no di�erence between evaluating rules with new relations or objects and evaluating

rules with only external perceptions. Recall that new relations that are true in a given state

are added to the list of perceptions for that state. Speci�cally the new relations that are true

in the current state are in current-perceptions and the new relations that were true in the

previous state are in previous-perceptions. To evaluate the rules the learning algorithm uses

the Probabilistic-Rule-Reinforce procedure from Chapter 3. This procedure checks if a

rule's preconditions and postcondition are true in the previous and current state respectively,

which is straightforward for both perceptions and new relations.

4.4.3 Predicting Using Rules with New Relations and Objects

Prediction using rules with new relations is unchanged from the prediction algorithm in

Figure 3-8. The algorithm determines if a rule applies for prediction as usual. A rule that

applies may have a new relation as a postcondition. For example, the rule

() ! click-in Window 1 ! ACTIVE1(NEW-WINDOW1) = T

90

applies following a click-in Window 1 action. The prediction algorithm then predicts that

the new relation ACTIVE1(NEW-WINDOW1) = T will be true in the next state. It

also predicts that the collapsed perceptions that de�ne the new relation will be true (i.e.,

EXIST (Window 1 ATB) = T ,EXIST (Window 1 CB) = T , andEXIST (Window 1 ZB) =

T).

Figure 4-9 shows a trace of a few prediction trials with a world model that includes new

relations. The algorithm is learning and predicting the EXIST relation only. The smoothed

total error is close to the smoothed total error without new relations (in Figure 3-9).

4.5 Summary

This chapter presented an algorithm that learns concepts by collapsing correlated or redun-

dant perceptions. It makes new relations and new objects that describe the environment

more concisely than the underlying perceptions. In the Macintosh Environment we saw

examples of learning important concepts that are similar to concepts people develop when

using the Macintosh, e.g., \window" and \active."

91

92

Chapter 5

General Rules as New Concepts

A limitation of the world model learned by the rule-learning algorithm is its speci�city.

A rule generalizes over states of the environment, because its preconditions may apply in

many states. The knowledge a rule contains, however, is true for speci�c objects in the

environment. The set of speci�c rules does not group objects that behave similarly nor

does it recognize that there are similar objects. For example, in an environment with two

light switches the rule-learning algorithm learns that light switch 1 turns electricity on or o�

and that light switch 2 turns electricity on or o�. This chapter presents an algorithm that

creates rules for general objects, such as a light switch, rather than speci�c objects, such as

light switch 1. Such general rules describe high-level characteristics of the environment.

As usual, the Macintosh Environment serves as an example. In this environment the

concept of a window is a key concept for understanding the environment. We have examined

many example situations with two windows (Window 1 and Window 2). Window 1 and

Window 2 share many characteristics that are true of any window. For example, a click

in a window causes that window to be active. Similarly, objects such as a close-box or

active-title-bar have characteristics that are true for any object of that type.

The algorithm in this chapter looks for rules that \match," i.e., they are the same except

for the speci�c objects in the rules. For example, the two rules that indicate that a click in

Window 1 causes Window 1 to be active, and that a click in Window 2 causes Window 2 to

be active, match. To generalize these rules the algorithm replaces the speci�c objects with

general objects.

The �nal step of the algorithm �nds attributes of the general objects (i.e., relations on

the general objects) by searching for perceptions of the speci�c objects in the original rule.

In this process, the agent uses its perception as well as its current knowledge to drive the

construction of the world model. This process is a natural cognitive process in people; it

corresponds to observing the environment to �nd the reasons for an event. For example, the

event of a rolling ball is explained by the observation that the ball is round. The generalizing

algorithm adds as many attributes of the general objects as possible to the general rule to

avoid over-generalization and nonsensical rules.

The algorithm to generalize rules is presented in Section 5.1. Like speci�c rules, general

rules may or may not be valid so they must be evaluated. The procedure for evaluating

general rules as well as for using general rules for prediction or action selection requires

some change from these procedures for speci�c rules. Section 5.4 describes these procedures.

Section 5.3 contains examples of general rules learned for the Macintosh Environment.

Rule generalization is exciting because learning research to date has not been successful

93

at learning general concepts in a form people can understand. Neural networks (Rumelhart

& McClelland 1986) are capable of generalizing gracefully from limited examples (such as the

generalization from the characteristics of Window 1 and Window 2 to the characteristics

of any window). The resulting representation of the learned knowledge (the network) is

typically incomprehensible, except for small problems. The general rules that the algorithm

in this chapter learns are similar to those a person might give to explain his knowledge about

the Macintosh Environment.

The process of creating general rules by �nding rules that match is similar to the gen-

eralization in (Berwick 1985) in the context of �nding grammar rules for language from

example sentences. Another related area of research involves learning �rst order predicates,

such as grandfather(x; y) father(x; z) ^ father(z; y), (see, e.g., (Richards & Mooney

1992, Pazzani, Brunk & Silverstein 1991, Winston 1992)). The problem in both Berwick

(1985) and learning �rst order predicates di�ers from the problem this chapter faces in

that examples in this problem (rules) are noisy, additional examples are not available, and

the database of attributes may be incomplete. The examples from which the algorithm

in this chapter learns are the previously learned rules. Thus the number of examples is

limited, and some of the example rules may be incorrect and may appear to match when

they should not. Furthermore, attributes of objects are available from observations which

are continually changing. Thus, relevant attributes may not be present.

5.1 An Algorithm to Learn General Rules

Before the agent can learn general rules, it must already have a good understanding of

how speci�c objects behave. Since the rule generalization algorithm �nds regularities in

the environment by looking for similar speci�c rules, the set of speci�c rules must contain

the rules to be generalized. The set of speci�c rules learned together with the current and

previous perceptions are inputs to the rule-generalization algorithm | the speci�c rules are

the examples of the general concept and the current and previous perceptions are used to

�nd attributes of the objects in the rules, such as the TY PE of the objects.

Figure 5-1 shows the rule-generalization algorithm. Additional subroutines and utility

functions are given in Figures 5-3 and 5-4. In the remainder of this section we will step

through the Generalize-Rules algorithm with an example. As an example let us use the

rules

() ! click-in Window 1 ! EXIST (Window 1 ATB) = T

() ! click-in Window 2 ! EXIST (Window 2 ATB) = T .

It is obvious that these rules describe the same observation in two windows. Structurally

they have the same template, modulo the speci�c object. A generalization would result

in a valid and important observation about the environment. The current and previous

perceptions at the time of generalization are shown in Figure 5-2. (Figure 5-2 shows only a

subset of the current and previous perceptions due to the large number of perceptions.)

The Generalize-Rules algorithm searches through all the rules and encounters the

rule

() ! click-in Window 1 ! EXIST (Window 1 ATB) = T

which it refers to as r. It makes a general rule, called gr, in which speci�c objects are

replaced with general objects.

94

Algorithm 8 Generalize-Rules()

For each rule r

if r is not on probation and was not already matched

let gr = make a general rule where each speci�c object in r

is replaced by a general object.

bind each general object in gr to the corresponding

speci�c object in r.

let attributes = Find-Attributes of general objects

due to binding with speci�c objects in r.

For each rule r1

if r1 is not on probation and was not already matched

if r1 and r match

bind each general object in gr to the corresponding

speci�c object in r1

let more-attributes = Find-Attributes of general objects

due to binding with speci�c objects in r1.

if no attribute in more-attributes contradicts some attribute

in attributes

set attributes = attributes
S

more-attributes.

If at least one matching rule was found

set preconditions(gr) = preconditions(gr)
S
attributes.

add gr to the rule set.

Figure 5-1: The Generalize-Rules Algorithm

Previous Perceptions Current Perceptions

EXIST (Window 1) = T EXIST (Window 1) = T

EXIST (Window 1 T = ATB EXIST (Window 1 ATB) = T

TYPE (Window 1) = REC TYPE (Window 1) = REC

TYPE (Window 1 ATB) = ATB TYPE (Window 1 ATB) = ATB

OV (Window 1 ATB, Window 1) = T OV (Window 1 ATB, Window 1) = T

OV (Window 1, Window 1 ATB) = F OV (Window 1, Window 1 ATB) = F

X (Window 1, Window 1 ATB) = 33 X (Window 1, Window 1 ATB) = 33

(Y Window 1, Window 1 ATB) = 321 Y (Window 1, Window 1 ATB) = 321

EXIST (Window 2) = REC

TYPE (Window 2) = REC

OV (Window 1, Window 2) = T

Figure 5-2: A subset of current and previous perceptions for a Macintosh screen situation

where in the current screen situation Window 1 is active and covers the entire screen and

in the previous screen situation Window 1 was active and Window 2 was inactive.

95

Algorithm 9 Find-Attributes(r,gr)

Let the objects in r be fo1; : : : ; ong.
Let the corresponding general objects in gr be fgo1; : : : ; gong.
Let attributes = ;.
For i = min number of arguments of a relation

to max number of arguments of a relation

For every ordered sequence, S, of the objects fo1; : : : ; ong,
where S has length i

For each relation, rel, that has i arguments

if rel(S) has value v in current-perceptions then

add rel(S) = v to attributes.

elseif rel(S) has value v in previous-perceptions then

add rel(S) = v to attributes.

Replace the speci�c objects in every attribute in attributes by the

corresponding general object

Return attributes

Figure 5-3: An algorithm to �nd attributes of general objects from perceptions

() ! click-in x ! EXIST (y) = T .

The rule-generalization algorithm assigns general objects symbol names such as

\genob53324". Throughout this chapter u; v; w; x; y, and z stand for general objects in

order to make the rules more readable.

In the next step, the rule-generalization algorithm searches for attributes of the objects

x and y by looking at the environment for perceptions of the corresponding speci�c objects

Window 1 and Window 1 ATB. Figure 5-3 contains the algorithm to �nd attributes. In our

example, it �nds the perceptions

TY PE(Window 1) = REC

TY PE(Window 1 ATB) = ATB

OV (Window 1 ATB;Window 1) = T

OV (Window 1;Window 1 ATB) = F

X(Window 1;Window 1 ATB) = 33

Y (Window 1;Window 1 ATB) = 321

etc. To get attributes of the general objects x and y, the algorithm replaces the speci�c

objects in each of the perceptions above, giving

TY PE(x) = REC

TY PE(y) = ATB

OV (y; x) = T

96

Algorithm 10 Match(r1,r2)

action(r1) and action(r2) are the same action or

action(r1) and action(r2) can be bound to each other and

Match-Perception(postcondition(r1), postcondition(r2)) and

For each perception perc1 in precondition(r1)

there is some perception perc2 in precondition(r2) such that

Match-Perception(perc1, perc2).

Algorithm 11 Match-Perception(p1,p2)

perception-function(p1) = perception-function(p2) and

perception-value(p1) = perception-value(p2) and

For each pair of objects o1 and o2

in perception-arguments(p1) and perception-arguments(p2) respectively

If o1 or o2 is bound but not to each other

then False

If neither o1 nor o2 is bound

then bind o1 and o2 to each other; True

else False.

Algorithm 12 Perception-Contradicts(p1,p2)

perception-function(p1) = perception-function(p2) and

perception-arguments(p1) = perception-arguments(p2) and

perception-value(p1) 6= perception-value(p2)

Figure 5-4: Utility functions for the rule-generalization algorithm

OV (x; y) = F

X(x; y) = 33

Y (x; y) = 321

etc. The algorithm saves these attributes in the set attributes. Note that the algorithm

�nds the redundant attribute OV (x; y) = F as well as OV (y; x) = T . Similarly, it �nds

attributes for any ordering of the objects in any relation with more than one argument. For

clarity, in this chapter we write the rules without the redundant attributes.

The inner loop of the rule-generalization algorithm searches through the set of rules for

a rule that matches r. When it reaches

r1 = () ! click-in Window 2 ! EXIST (Window 2 ATB) = T

it �nds that r1 matches r. The Match function in Figure 5-4 successfully binds Window 2

to Window 1 and Window 2 ATB to Window 1 ATB, and returns true.

Next the algorithm looks for additional attributes for the general objects by binding x

to Window 2 and y to Window 2 ATB. It �nds the attribute

TY PE(x) = REC

97

only, because Window 2 is not active in either the current or the previous states. This at-

tribute does not contradict any of the known attributes (see the Perception-Contradicts

function in Figure 5-4). The new set of attributes is the union of the set of attributes with

the additional attributes. In our example the set of attributes

TY PE(x) = REC

TY PE(y) = ATB

OV (y; x) = T

X(x; y) = 33

Y (x; y) = 321

is unchanged.

If the additional attributes contradict the known attributes then the rule r1 would not

be considered a match. It could be matched with a more appropriate rule. The inner loop,

which matches rules, does not stop when it �nds one matching rule. Rather it �nds as many

matches as possible, thereby �nding more and more attributes for the general objects.

To �nish the example, once the algorithm completes the inner loop it checks if a match

was found. Since there was a match, the algorithm adds the attributes to the preconditions

of the general rule and adds the resulting rule

TY PE(x) = REC ^ TY PE(y) = ATB ^ OV (y; x) = T ^X(x; y) = 33 ^ Y (x; y) = 321

! click-in x ! EXIST (y) = T

to the rule set. This rule states that a click in a rectangle object causes an active-title-bar

to be present if the active-title-bar overlaps the rectangle and has the speci�ed X and Y

relations with the rectangle. This rule is valid and useful.

The above example brings an important issue to light. The algorithm does not �nd any

attributes of the general object y due to r1. In the above example, the algorithm �nds

attributes of y due only to the rule r. As a worst case example, consider executing the rule

generalization algorithm in a state where both the current and previous perceptions contain

no windows. In this case the algorithm would not �nd any attributes of either x or y and

would generate the rule

() ! click-in x ! EXIST (y) = T

from the two speci�c rules in the above example. This general rule would match to any two

objects in the environment and would be wrong most of the time. For example, bind x to

Window 1 CB and y toWindow 1. Because of such possible bindings this rule is invalid, and

the evaluation algorithm will quickly remove it (see Section 5.4). The problem is that, as we

saw previously, there is a valid rule resulting from generalizing these two speci�c rules. The

algorithm missed this rule because at this time its perceptions are insu�cient. Therefore,

the rule-generalization algorithm must execute repeatedly in di�erent environment states.

5.2 Generalizing Rules with New Relations

The example in the previous section generated a valid rule that predicts the presence of

an active-title-bar after a click in a window. Recall that Chapter 4 describes an algorithm

that learns that when the agent perceives a window's active-title-bar then the new relation

98

Previous Perceptions

EXIST (Window 1) = T

EXIST (NEW-WINDOW1) = T

TYPE (Window 1) = REC

PART-OF (Window 1 INTERIOR, NEW-WINDOW1) = T

PART-OF (Window 1, NEW-WINDOW1) = T

EXIST (Window 2) = T

EXIST (NEW-WINDOW2) = T

TYPE (Window 2) = REC

PART-OF (Window 2, NEW-WINDOW2) = T

PART-OF (Window 2 INTERIOR, NEW-WINDOW2) = T

PART-OF (Window 2 GB, NEW-WINDOW2) = T

OV (Window 1, Window 2) = T

Current Perceptions

EXIST (Window 1) = T

EXIST (NEW-WINDOW1) = T

TYPE (Window 1) = REC

PART-OF (Window 1 INTERIOR, NEW-WINDOW1) = T

PART-OF (Window 1, NEW-WINDOW1) = T

EXIST (Window 2) = T

EXIST (NEW-WINDOW2) = T

Figure 5-5: A subset of current and previous perceptions for a Macintosh screen situation,

including new relations and new objects. In this screen situation Window 1 is active and

covers the entire screen and in the previous screen situation Window 1 was active and

Window 2 was inactive.

| that the window is active | is true. A rule stating that a click in a window makes

that window active describes a deeper understanding of the environment than the rule in

the previous section. The prediction that the corresponding active title bar exists naturally

follows from the de�nition of the new relation.

In general, not only in the Macintosh Environment, the rule generalization algorithm

should use the knowledge captured by new relations rather than disregarding these concepts.

This section describes the changes to theGeneralize-Rules algorithm that allow it to deal

with new relations using the example from the previous section. In this section, however,

new relations replace the collapsed perceptions. The matching example rules are

() ! click-in Window 1 ! ACTIVE1 (NEW-WINDOW1) = T

() ! click-in Window 2 ! ACTIVE2 (NEW-WINDOW2) = T .

The previous and current relations are shown in Figure 5-5. They contains pseudo-perceptions

of the new relations and new objects.

Adapting the Generalize-Rules algorithm to handle new relations requires no change

to the main function; only some subroutines are changed. The modi�ed subroutines are

New-Find-Attributes in Figure 5-6 and New-Match-Perception in Figure 5-7.

Again, let us step through the Generalize-Rules algorithm. The algorithm �nds the

rule

99

Algorithm 13 New-Find-Attributes(r,gr)

Let the objects in r be objects = fo1; : : : ; ong.
Let the corresponding general objects in gr be fgo1; : : : ; gong.
Let attributes = ;.
For i = min number of arguments of a relation

to max number of arguments of a relation

For every ordered sequence, S, of the objects fo1; : : : ; ong,
where S has length i

For each relation, rel, that has i arguments

if rel(S) has value v in current-perceptions then

add rel(S) = v to attributes.

elseif rel(S) has value v in previous-perceptions then

add rel(S) = v to attributes.

For every object o 2 objects
if the object o is a new object and there is no attribute with relation

PART-OF where o is one of the arguments then

�nd all perceptions with relation function PART-OF such that the

object o is one of the arguments

add one of the PART-OF perceptions selected at random to attributes

if there are any objects in the PART-OF perception that are not in

fo1; : : : ; ong then
make a general object for the new objects

add the additional objects to the set objects.

Find attributes of the additional objects.

Replace the speci�c objects in every attribute in attributes by the

corresponding general object

Return attributes.

Figure 5-6: A modi�ed algorithm to �nd attributes of objects and new objects.

100

r = () ! click-in Window 1 ! ACTIVE1 (NEW-WINDOW1) = T

and makes the general rule

gr = () ! click-in x ! ACTIVE1(y) = T .

Next the algorithm looks for attributes of x and y due to r usingNew-Find-Attributes. It

�nds the attribute TY PE(Window 1) = REC and PART-OF (Window 1, NEW-WINDOW1)

= T . There are no additional attributes so the general attributes are

TY PE(x) = REC

and

PART-OF(x; y) = T:

In this example, there is an immediate connection between the two objects Window 1

and NEW-WINDOW1 via a PART-OF relation. With other rules, such as

() ! click-in Window 1 TB ! ACTIVE (NEW-WINDOW1) = T ,

the connection between the objects is not immediate. A third object must be added to

establish the connection between this invented object and the ground objects. Therefore,

for rules that contain new objects, the Find-Attributes algorithm uses a special procedure

to �nd a connection through the PART-OF relation that the agent de�nes when it creates

the new object. The algorithm looks for all the PART-OF relations it can perceive (in this

case PART-OF (Window 1, NEW-WINDOW1) = T , and PART-OF (Window 1 interior,

NEW-WINDOW1) = T). It selects one of these perceptions at random. Recall that the

rule generalizing algorithm executes repeatedly so eventually it will create rules with all

possible PART-OF perceptions. Suppose the algorithm selects the perception

PART-OF(Window 1;NEW-WINDOW1) = T:

The algorithm then adds a new general object for the object Window 1 to the objects

in the general rule and looks for attributes of this object. Among other attributes it �nds

OV (Window 1 TB, Window 1) = T which connects the title-bar with the new object NEW-

WINDOW1.

Continuing with our example the rule-generalization algorithm next searches for a rule

that matches r. When it encounters

r1 = () ! click-in Window 2 ! ACTIVE2 (NEW-WINDOW2) = T

it can match Window 2 to Window 1 and NEW-WINDOW2 to NEW-WINDOW1. The

relations ACTIVE1 and ACTIVE2 are not equal but because these are new relations which

themselves include speci�c objects they are di�erent from other relation functions. The

algorithmNew-Match-Perception shows the situations in which new relations generalize.

Briey, any set of new relations can generalize to form a new relation. The generalization is

remembered so in the future the original relation can match the new relation or vise-versa in

the matching procedure. In our example, the relation functions ACTIVE1 and ACTIVE2

generalize to a new relation, which I name ACTIVE. The general rule gr becomes

() ! click-in x ! ACTIVE(y) = T .

101

Algorithm 14 New-Match-Perception(p1,p2)

perception-value(p1) = perception-value(p2) and

(perception-function(p1) = perception-function(p2) or

perception-function(p2) is a general relation and

perception-function(p1) �ts the general relation perception-function(p2) or

perception-function(p1) and perception-function(p2) are new relations and

perception-function(p1) and perception-function(p2) can be generalized) and

For each pair of objects o1 and o2

in perception-arguments(p1) and perception-arguments(p2) respectively

If o1 or o2 is bound but not to each other

then False

If neither o1 nor o2 is bound

then bind o1 and o2 to each other; True

else False.

Algorithm 15 Match-General-Relation(f1,f2)

If f1 is one of the relations that were generalized to create f2 then

return True

return False.

Figure 5-7: Matching perceptions with new relations and new objects

Having found a match the algorithm looks for attributes of x and y due to r1. Again

it �nds TY PE(Window 2) = REC and PART-OF (Window 2, NEW-WINDOW2) = T

which does not add to the set of attributes. The �nal set of attributes is, therefore,

TY PE(x) = REC

and

PART-OF(x; y) = T:

These attributes do not contradict the previous attributes so the resulting general rule is

TY PE(x) = REC ^ PART-OF(x; y) = T ! click-in x ! ACTIVE(y) = T .

This rule is one of the rules Chapter 1 set as goals for the learning algorithm.

5.3 General Rules in the Macintosh Environment

This section describes some general rules learned for the Macintosh Environment. Because

general rules are sometimes di�cult to read, we look at each general rule with a trace of the

speci�c rules that lead to the creation of the general rule. The following trace shows the

creation of a simple general rule that states that a click in a close-box makes the close-box

disappear.

NIL ! click-in Window 1 CB ! EXIST (Window 1 CB) = NP

102

NIL ! click-in Window 2 CB ! EXIST (Window 2 CB) = NP

TY PE(x) = CB ! click-in x ! EXIST (x) = NP

When the general rule is created it is placed on probation. Since this rule is valid, rule-

evaluation accepts it and takes it o� probation after some time (see Section 5.4 for a dis-

cussion regarding evaluating general rules). The above rule after evaluation has reliability

1:0 and is o� probation.

(success 7, probation NIL, reliability 1.0)

TY PE(x) = CB ! click-in x ! EXIST (x) = NP

The following general rule describes that a click-in a close box makes the corresponding

window not perceptible.

NIL ! click-in Window 1 CB ! EXIST (NEW-WINDOW1) = NP

NIL ! click-in Window 2 CB ! EXIST (NEW-WINDOW2) = NP

TY PE(z) = REC ^X(z; x) = 1221 ^ Y (z; x) = 2211

^OV (zx) = F ^ PART-OF(z; y) = T ^ACTIVE(y) = T

^TY PE(x) = CB ^OV (x; z) = F

! click-in x ! EXIST (y) = NP

This rule uses some new objects and new relations. When creating this rule a third object

(z) was added to connect the new object NEW-WINDOW1 with the Window 1 CB. Recall

that the algorithm �nds the connection through the PART-OF relation. When creating the

above rule it selected the perception PART-OF(Window 1 INTERIOR, NEW-WINDOW1)

= T , since the interior of a window is the only rectangle object with the attributes in the

rule. Appendix A contains additional rules that explain the disappearance of the grow-box,

zoom-box, and active-title-bar of a window due to a click in the window's close-box.

In this chapter we stepped through the generalization algorithm with example rules

describing that a click in a window makes that window active. In fact the rule-generalization

algorithm �nds that the speci�c rules for a click in the interior of a window also match the

two rules we used as an example. The following trace shows that four rules match to create

the general rule that states that a click in a rectangle that is part of a window object makes

that window object active. The algorithm creates the new general relation ACTIVE in the

process of matching these rules.

NIL ! click-in Window 1 INTERIOR ! ACTIVE1(NEW-WINDOW1) = T

NIL ! click-in Window 1 ! ACTIVE1(NEW-WINDOW1) = T

NIL ! click-in Window 2 INTERIOR ! ACTIVE2(NEW-WINDOW2) = T

NIL ! click-in Window 2 ! ACTIVE2(NEW-WINDOW2) = T

TY PE(x) = REC ^ PART �OF (x; y) = T ! click-in x ! ACTIVE(y) = T

The following general rule states the similar concept that a click in the title-bar of a

window makes that window active. In this rule z is a window rectangle.

103

NIL ! click-in Window 1 TB ! ACTIVE1(NEW-WINDOW1) = T

NIL ! click-in Window 2 TB ! ACTIVE2(NEW-WINDOW2) = T

TY PE(z) = REC ^ PART � OF (z; y) = T ^ TY PE(x) = TB

^X(x; z) = 33 ^ Y (x; z) = 312 ^OV (x; z) = T

! click-in x ! ACTIVE(y) = T

The remaining rules in this section describe e�ects of a click in one window on another

window. The following rule describes that a click in a rectangle makes the active-title-bar

of another window disappear.

NIL ! click-in Window 2 INTERIOR ! EXIST (Window 1 ATB) = NP

NIL ! click-in Window 2 ! EXIST (Window 1 ATB) = NP

TY PE(y) = ATB ^OV (y; x) = F ^ TY PE(x) = REC

^X(x; y) = 1212^ Y (x; y) = 2211 ^OV (x; y) = F

! click-in x ! EXIST (y) = NP

Due to the OV , X , and Y relations in the above rule, it applies only in speci�c environment

con�gurations, such as the con�guration of Figure 5-8. Other similar rules describe the

same e�ect in di�erent con�gurations. For example the following rule applies when the

active-title-bar overlaps the clicked rectangle in the bottom left hand corner.

NIL ! click-in Window 1 INTERIOR ! EXIST (Window 2 ATB) = NP

NIL ! click-in Window 1 ! EXIST (Window 2 ATB) = NP

TY PE(y) = ATB ^X(y; x) = 1212 ^ Y (y; x) = 2121 ^OV (y; x) = T

^TY PE(x) = REC ! click-in x ! EXIST (y) = NP

The following rule describes an e�ect of a click in a zoom-box of a window on a rectangle

object in another window | namely that the rectangle object disappears.

EXIST (NEW-WINDOW1) = T ! click-in Window 2 ZB ! EXIST (Window 1) = NP

EXIST (NEW-WINDOW1) = T ! click-in Window 2 ZB !
EXIST (Window 1 INTERIOR) = NP

EXIST (z) = T ^ TY PE(y) = REC ^ PART-OF(y; z) = T

^TY PE(x) = ZB ^X(x; y) = 2112 ^ Y (x; y) = 2211 ^OV (x; y) = T

! click-in x ! EXIST (y) = NP

All the above rules describe e�ects on the EXIST relation. Now let us examine a few

general rules for the OV relation. The following rule states that if a window is partially

covered by another rectangle then a click in the title-bar of the window makes the window

rectangle overlap the other rectangle.

NIL ! click-in Window 2 TB ! OV (Window 2, Window 1 INTERIOR) = T

NIL ! click-in Window 2 TB ! OV (Window 2, Window 1) = T

104

Figure 5-8: A screen situation where one window is below and to the left of another active

window

TY PE(z) = REC ^ OV (zy) = T ^ TY PE(y) = REC ^ TY PE(x) = TB

^X(x; y) = 33^X(x; z) = 1212 ^ Y (x; y) = 312 ^ Y (x; z) = 2121

^OV (x; y) = T ^OV (x; z) = F

! click-in x ! OV (y; z) = T

The following rule states that after a click in a rectangle that is overlapped by a window

the rectangle is not overlapped by the interior of the window.

EXIST (Window 2) = T ! click-in Window 1 INTERIOR !
OV (Window 2 INTERIOR, Window 1 INTERIOR) = F

EXIST (Window 2) = T ! click-in Window 1 !
OV (Window 2 INTERIOR, Window 1) = F

EXIST (z) = T ^ TY PE(x) = REC ^X(x; z) = 2121 ^X(x; y) = 2121

^Y (x; z) = 1212^ Y (x; y) = 1122^OV (x; y) = F ^ TY PE(y) = REC ^X(y; z) = 33

^Y (y; z) = 213^ OV (y; z) = T ^ TY PE(z) = REC ^OV (z; x) = T

! click-in x ! OV (y; x) = F

The last rule we will discuss is especially interesting since it is the second of the goal rules

from Chapter 1. This rule states that if one rectangle is under another rectangle then a

click in the bottom rectangle brings that rectangle to the front.

OV (Window 1 INTERIOR, Window 2 INTERIOR) = F

! click-in Window 1 INTERIOR !
OV (Window 1 INTERIOR, Window 2 INTERIOR) = T

105

Algorithm 16 Test-All-Bindings(gr, test)

Let GeneralObjects = all the objects in the rule gr.

Let ObjectList = all the known speci�c objects.

For each go in GeneralObjects

Let PossibleObjects(go) = the objects in ObjectList that can be bound to go

s.t. gr applies in the previous state

For every possible binding of the objects in GeneralObjects

test gr

Figure 5-9: An algorithm to test a general rule on every possible binding to speci�c objects

in the environment

OV (Window 1, Window 2 INTERIOR) = F ! click-in Window 1 !
OV (Window 1, Window 2 INTERIOR) = T

TY PE(y) = REC ^ TY PE(x) = REC ^X(x; y) = 2121

^Y (x; y) = 1212^OV (x; y) = F ! click-in x ! OV (x; y) = T

Appendix A contains some more examples of general rules that the Generalize-Rules

algorithm creates.

5.4 Evaluating and Using General Rules

General rules that the Generalize-Rules algorithm generates are not guaranteed to be

valid. The rules are often overly general because the current and previous perceptions

at the time of generalization did not contain enough attributes for the general objects.

Therefore, new general rules, like speci�c rules, are on probation initially. The algorithm

evaluates their validity with tests in the environment. Like the rule-evaluation algorithm in

Chapter 3, a rule succeeds when its preconditions and actions apply in the previous state

and its postcondition is true in the current state. Of course, a perception with general

objects is never true in the current state. The general objects must be bound to speci�c

objects before the rule can be evaluated. Likewise to use a general rule for prediction or

goal oriented action selection the general objects must be bound to speci�c objects.

Furthermore, a general rule is valid if for every possible binding of speci�c objects to

the general objects the resulting speci�c rule is valid. Therefore, to evaluate a general rule

the algorithm must evaluate all the speci�c rules resulting from every possible binding of

speci�c objects. The algorithm Test-All-Bindings in Figure 5-9 evaluates all the speci�c

rules when the input test is the Probabilistic-Rule-Reinforce function from Chapter 3.

Test-All-Bindings can predict from all possible bindings of speci�c objects when test is

the rule prediction function.

The operation of testing every possible binding of speci�c objects to the general objects is

exponential in the number of general objects. If the environment contains n speci�c objects

and a general rule contains k general objects, then the number of possible bindings is nk.

The Test-All-Bindings procedure reduces the possibilities somewhat by checking partial

bindings and abandoning them if they result in a rule that does not apply. For example,

if a rule contains the perception TY PE(u) = ZB then an assignment of Window 1 CB to

106

u immediately results in a rule that does not apply since the TY PE of Window 1 CB is

perceived to be CB. All possible bindings of other objects where Window 1 CB is bound

to u are abandoned.

This heuristic reduces the number of possibilities, but the operation remains exponential.

Therefore, evaluating and predicting from general rules are time-consuming operations. The

search problem with using general rules of this kind is a known problem in AI (see (Winston

1992) for a discussion). On the other hand, the number of general objects in a rule is

typically not very large (for example, the algorithm generated no general rule with more

than �ve general objects). Thus the search space is large but manageable.

Naturally, after general rules are accepted, the learning algorithm saves the general

rules and uses them to remove the speci�c rules that match them (usually the rules used to

create the general rule). This operation reduces the number of rules and makes a concise

and readable world model.

5.5 Discussion

The purpose of rule generalization is to learn a world model that is not specialized to par-

ticular objects in the environment. The generalized model should apply to new objects that

are not familiar to the agent. The question that remains is whether the rule-generalization

algorithm can learn a complete, general world model.

We have seen the format of the general rules this algorithm learns. Therefore we know

that the rules describe behaviors, in the environment, that are not speci�c to objects.

We have also discussed algorithms that use the general rules to predict and plan. These

algorithms are straightforward, although time consuming.

The representation of the world model, then, is su�ciently general, but we still have

not answered our previous question. Can the rule-generalization algorithm learn a complete

general model? The answer is yes | I believe | but not yet.

I believe that the algorithm is general enough that, given enough time and enough

example environments, it can learn a complete, general model. Additional environments

would give the algorithm more examples to generalize from and more time is needed to test

the general rules created and to repeat the rule-generalization procedure.

At this point in the research there has not been enough time to learn a complete general

model of the Macintosh Environment. The algorithm has had access to speci�c rules from

environments with two windows, Window 1 and Window 2, which means that the number

of example rules for any general rule is small (often less than two example rules). Therefore

many general rules are missed. Furthermore the time to learn has been limited. The current

state of the world model is a combination of speci�c and general rules. This model is useful

for prediction and planning in an environment with Window 1 and Window 2.

In environments with other windows, e.g. Window 4 and Window 5, the general rules

will apply, but there are aspects of the environment (with the new windows) that are not

explained by any general rule. These aspects of the environment are unexplained. In terms

of evaluating the world model with prediction, the results would be better than prediction

with no rules, but not as good as prediction with the speci�c model or the model with both

speci�c and general rules.

A related question is how well the world model, with a combination of speci�c and

general rules, explains an environment with the two familiar windows (Window 1 and Win-

dow 2) and a third window (Window 3). This question has two facets. The �rst problem

107

is explaining any event with Window 3, which is similar to the problem we discussed pre-

viously. Some aspects of the behavior of a window are captured with general rules so the

world model can explain some of the events involving Window 3, but not all of them. The

second di�culty is the interaction of three windows which has some behavior that is di�er-

ent, even contradictory, to the behavior of a two window environment. The three window

interaction cannot be explained by a model trained only in a two window environment.

The agent must train in a three window environment, learn speci�c rules, and generalize

these rules before we can expect to �nd a complete general world model for three window

environment.

5.6 Summary

This chapter presented a new algorithm that uses speci�c world knowledge (rules) and

observations to learn general concepts about the environment. The learned concepts are

represented as rules with relations on general objects. A general object can be bound to any

speci�c object in the environment resulting in concepts that are true for multiple speci�c

objects. Experiments of rule generalization in the Macintosh Environment result in concepts

that are much like people's description of the Macintosh window interface.

108

Chapter 6

Picking the Best Expert from a

Sequence

Suppose you are looking for an expert, such as a stock broker. You have limited resources

and would like to e�ciently �nd an expert who has a low error rate. There are two issues to

face. First, when you meet a candidate expert you are not told his error rate, but can only

�nd this out experimentally. Second, you do not know a priori how low an error rate to

aim for. This chapter presents an algorithm to �nd a good expert given limited resources,

and show that the algorithm is e�cient in the sense that it �nds an expert that is almost

as good as the expert you could �nd if each expert's error rate was stamped on his forehead

(given the same resources).

If each expert's error rate were stamped on his forehead then �nding a good expert

would be easy. Simply examine the experts one at a time and keep the one with the lowest

error rate. If you may examine at most n experts you will �nd the best of these n experts,

whose expected error rate we denote by bn. You cannot do any better than this without

examining more experts.

Since experts do not typically come marked with their error rates, you must test each

expert to estimate their error rates. We assume that we can generate or access a sequence

of independent experimental trials for each expert.

If the number of available experts is �nite, you may retain all of them while you test

them. In this case the interesting issues are determining which expert to test next (if you

cannot test all the experts simultaneously), and determining the best expert given their

test results. These issues have been studied in reinforcement learning literature and several

interesting algorithms have been developed (see Watkins (1989), Sutton (1990), Sutton

(1991), and Kaelbling (1990) for some examples).

Here we are interested in the case where we may test only one expert at a time. The

problems in this case are: (1) what is the error rate of a \good" expert, and (2) how long

do we need to test an expert until we are convinced that he is good or bad?

First consider the case that we have a predetermined threshold such that an error rate

below this threshold makes the expert \good" (acceptable). This is a well-studied statistical

problem. There are numerous statistical tests available to determine if an expert is good;

we use the ratio test which is the most powerful among them. The ratio test is presented

in Section 6.2.1.

However, in our problem formulation we have no prior knowledge of the error rate

distribution. We thus do not have an error-rate threshold to de�ne a good expert, and

109

so cannot use the ratio test. The algorithm in Section 6.2.2 overcomes this limitation by

setting lower and lower thresholds as it encounters better experts. Section 6.2 contains the

main result of this paper: our algorithm �nds an expert whose error rate is close to the

error rate of the best expert you can expect to �nd given the same resources.

Section 6.3 presents a similar expert-�nding algorithm that uses the sequential ratio test

(Wald 1947) rather than the ratio test. Wald (1947) shows empirically that the sequential

ratio test is twice as e�cient as the ratio test when the test objects are normally distributed.

While the theoretical bound for the sequential-ratio expert-�nding algorithm is weaker

than the bound for the ratio-test expert-�nding algorithm, empirical results with speci�c

distributions in Section 6.4 indicate that the former algorithm performs better in practice.

6.1 An AI Application: Learning World Models

The expert-�nding problem is related to the problem of learning a causal world model in

this thesis. Recall that the world model is a set of rules of the form

precondition ! action ! postcondition

with the meaning that if the preconditions are true in the current state and the action is

taken, then the postcondition will be true in the next state.

An algorithm to learn rules uses triples of previous state, S, action, A, and current state

to learn. It may isolate a postcondition, P , in the current state, and generate preconditions

that explain the postcondition from the previous state and action. For any precondition

PC that is true in state S, the rule PC ! A ! P has some probability p of predicting

incorrectly. To learn a world model, the algorithm must �nd the rules with low probability

of prediction error, and discard rules with high probability of prediction error. Unlike

the world model in the rest of this thesis, which contains many rules for any action and

postcondition pair, this section attempts to �nd exactly one best rule for each action and

postcondition pair.

The problem of �nding a good rule to describe the environment is thus an expert �nding

problem. It �ts into the model discussed here since (1) each rule has an unknown error rate,

(2) the distribution of rules' error rates is unknown and depends both on the environment

and the learning algorithm, and (3) the learning algorithm can generate arbitrarily many

rules.

6.2 Finding Good Experts from an Unknown Distribution

First, let us reformulate the expert-�nding problem as a problem of �nding low error-rate

coins from an in�nite sequence c1; c2; : : : of coins, where coin ci has probability ri of \failure"

(tails) and probability 1� ri of \success" (heads). The ri's are determined by independent

draws from the interval [0; 1], according to some unknown distribution. We want to �nd a

\good" coin, i.e. a coin with small probability ri of failure (error). We are not given the

ri's, but must estimate them using coin ips (trials).

The main result of this section is:

Theorem 5 There is an algorithm (algorithm FindExpert) such that when the error rates

of drawn coins are unknown quantities drawn from an unknown distribution, after t trials,

with probability at least 1�1=t, we expect to �nd a coin whose probability of error is at most

bt= ln2 t + O(1p
ln t

).

110

This theorem states that after t trials, we expect the algorithm to �nd an expert that

is almost as good as the best expert in a set of t= ln2 t randomly drawn experts (who would

have expected error rate bt= ln2 t). Note that this result depends in a natural manner on the

unknown distribution.

Recall that in t trials if the experts' error rates are known we can �nd the best of t

experts' error rates (bt). Compared to this, our algorithm must examine fewer experts

because it must spend time estimating their error rates. For some distributions (such as for

fair coins) bt= ln2 t and bt are equal, while for other distribution they can be quite far apart.

The rest of this section gives the ratio test, the algorithm for �nding a good expert, and

the proof of Theorem 5

6.2.1 The Ratio Test

Since we do not know the error rates of the coins when we draw them, we must estimate

them by ipping the coins. If we knew that \good" coins have error rate at most p1, we

could use standard statistical tests to determine if a coin's error rate is above or below this

threshold. Because it is di�cult to test coins that are very close to a threshold, we instead

use the ratio test, which tests one hypothesis against another. In this case the hypotheses

are that the coin has error rate at most p0, versus that the coin has error rate at least p1,

where p0 is a �xed value less than p1.

The Problem Given a coin with unknown rate of failure p.

Test if p � p0 vs. p � p1. Accept if p � p0. Reject if p � p1.

Requirements The probability of rejecting a coin does not exceed � if p � p0, and the

probability of accepting a coin does not exceed � if p � p1.
1

The Test Let m be the number of samples, and fm be the number of failures in m samples.

The likelihood ratio is the probability of fm failures under the hypothesis that p = p0
(H0), over the probability of fm failures under the hypothesis that p = p1 (H1). The

test rejects if this ratio is smaller than a predetermined threshold. For Bernoulli trials

the ratio test is equivalent to testing if

fm � Cm

where Cm is some constant.

Due to the requirement that Pr freject H0jH0 trueg � �, and using Cherno� bound

we can show that the ratio test becomes

reject if fm � (p0 +
q

ln 1=�
2m

)m

accept otherwise:

1We choose the ratio test since it has the most power, i.e., for a given �, i.e. it gives the least � (probability

of accepting when the hypothesis H0 is wrong (see (Rice 1988).)

111

The Sample Size From the requirements that Pr facceptH0jH0falseg � �, and Cm =

(p0 +
q

ln 1=�
2m)m, using Cherno� bounds we �nd the necessary number of samples

m �

�p
ln 1=�+

p
ln 1=�

�2
2(p1 � p0)2

:

The Probability of Accepting a Coin Again using Cherno� bounds we can compute

the following bounds on the probability that a coin with probability of failure p will

be accepted.

Pr facceptjpg = Pr ffm < (p1 � k)mjpg

< expf�2m(p� p1 + k)2g

= expf�2m(p� p1)(p� p1 + 2k)� ln 1=�g if p � p1 � k

Pr facceptjpg = 1� Pr frejectjpg

= 1� Pr ffm > (p1 � k)mjpg

> 1� expf�2m(p� p1 + k)2g

= 1� expf�2m(p� p1)(p� p1 + 2k)� ln 1=�g if p � p1 � k

Where k =
q

ln 1=�
2m

.

6.2.2 An Algorithm for Finding a Good Expert

We know how to test if a coin is good given a threshold de�ning a good error rate, but when

we do not know the error-rate distribution we can not estimate the lowest error rate bt that

we can expect to achieve in t trials. The following algorithm overcomes this handicap by

�nding better and better coins and successively lowering the threshold for later coins.

The algorithm for �nding a good coin is the following.

Algorithm 17 FindExpert

Input: t, an upper bound on the number of trials (coin ips) allowed.

Let BestCoin = Draw a coin.

Flip BestCoin ln3 t times to �nd bp.
Set p1 = bp.
Repeat until all t trials are used

Let p0 = p1 � �(p1), where �(p1) =
p
4= ln(t).

Let Coin = Draw a coin.

Test Coin using the ratio test:

Flip Coin m = ln2 t times.

Accept if fm < (p1 � �(p1)=2)m.

If the ratio test accepted then

Set BestCoin = Coin.

Flip BestCoin an additional ln3 t times to �nd an improved bp.
Set p1 = bp.

Output BestCoin.

112

6.2.3 E�ciency of Algorithm FindExpert

This section proves Theorem 5. The following outline clari�es the main steps of the proof

which is long and detailed.

Description of the proof: Since the error-rate distribution is unknown, we do not have

any estimate of bt, so the algorithm uses better and better estimates. It starts with a

random coin and a good estimate of its error rate. It prepares a test to determine if a new

coin is better than the current coin (with high probability). Upon �nding such a coin it

prepares a stricter test to �nd a better coin, and so on. We show that the time to test each

coin is short, and thus we see many coins. Since we almost always keep the better coin we

can �nd a coin whose error rate is at most the expected best error rate of the the algorithm

saw (plus a small correction).

Lemma 3 shows that the ratio test with ln2 t samples ful�lls the required probability

bounds on erroneous acceptances and rejections.

Lemma 3 ln2 t samples are su�cient for the ratio test with parameters p1, p0 = p1 � �,

� = � = 1=t2, and C = (p0 +
�
2
)m.

Proof: With these parameter values, a su�cient sample size is

m �

�p
ln 1=�+

p
ln 1=�

�2
2�2

= ln2 t:

Now let us consider the e�ects of estimating the error probability of the best coins. One

e�ect is that an estimated error probability that is lower than the true error probability

gives us a tougher than necessary test. In other words, we are likely to reject a better coin

that lies in the range [bp; p]. The following lemma shows that this range is small compared

to the testing gap, �.

Lemma 4 With probability 1 � 1=t2, estimating the error probability of a coin with ln3 t

coin tosses gives a testing gap of size O(�) = O(1=
p
ln t).

Proof:

If the estimate of the error probability of the coin, bp, is smaller than p, the true error

probability of the coin, then the true testing gap for the test is larger than � because the ratio

test is only guaranteed to accept coins with error probability � p0. Thus the true acceptance

gap for this test is the range [p0; p] which has size

g = � + (p� bp):
After testing the coin for ln3 t trials the standard deviation of the estimate bp is �bp =q

p(1�p)
ln3 t

� 1

2
p
ln3 t

. With probability 1 � 1=t2, bp is not farther than O(
p
ln t) standard

deviations from p (see Appendix B for the proof.) Thus, with probability 1� 1=t2,

g � � +
p
ln t�bp � � +

p
ln t

1

2
p
ln3 t

= �+
1

2 ln t
= O(�):

If the estimate bp � p then clearly g = O(�).

When the true error probability (p) is smaller than the estimated error probability, p

lies in the testing range [p0; p1]. Recall that in this range we have a reasonable chance of

accepting or rejecting. Thus we have a reasonable chance of accepting coins in the range

113

[p; p1] which are worse than the current coin. Lemma 5 shows that since p is close to bp the
probability of accepting coins in that range remains small.

Lemma 5 With probability 1�1=t2, estimating the error probability of a coin with ln3 t coin

tosses gives the ratio test an O(t
2p
ln t

t2
) probability of accepting a coin with error probability

greater than the best coin's error probability.

Proof: If the estimate bp � p then it is clear that the probability of accepting a coin with

error probability greater than p is at most � = 1=t2 since the probability of accepting a coin

with error probability p is monotonically decreasing with increasing p.

If p < bp there is a higher probability of accepting coins with error probability less than p,

because p is in the range [p0; p1]. The probability of accepting any coin in the range [p; p1]

is at most Pr facceptjpg, which is the value we would like to compute but cannot since we

do not know p.

Appendix B shows that with probability 1�1=t2, bp is within O(pln t) standard deviations
of p. So we want to compute Pr

n
acceptj(p1 �

p
ln t�bp)o.

Since p1 �
p
ln t�bp � p1 �

1
2 ln t

> p1 � k, for the parameter settings of the ratio tests of

algorithm FindExpert

Pr

�
acceptjp1 �

1

2 ln t

�
< expf�2m(p� p1)(p� p1 + 2k)� ln 1=�g

= expf�2m(p� p1)(p� p1 + �)� 2 ln tg

= expf�2 ln2 t

�
�

1

2 ln t

��
�

1

2 ln t
+

2
p
ln t

�
� 2 ln tg

= expfln t

�1 + 4

p
ln t

2 ln t

!
� 2 ln tg

� e2
p
ln t�2 ln t

=
t2=

p
ln t

t2

This completes the proof.

The next step of the proof computes the number of coins we expect the algorithm to

test.

Lemma 6 The expected number, N , of coins algorithm FindExpert tests is O(t= ln2 t)

Proof:

We know that the algorithm takes total time t, and we can compute the time that the

algorithm takes for N coins. Estimating the initial coin takes ln3 t time. Testing each of

the N coins takes ln2 t time, and each time we accept a coin (at most logN + o(1) times

from Appendix D) it is tested ln3 t times. Summarizing we have

ln3 t +N ln2 t + (logN + o(1)) ln3 t = t

Thus

N = O(
t

ln2 t
):

And now we are ready to prove the main theorem (Theorem 5.)

114

Proof of main theorem: With probability 1 � Pr(any problem with the test sequence),

after t trials we will see O(t= ln2 t) coins and have the lowest error coin among them. Notice

that the last series of tests (i.e., since the last accepted coin) may have rejected coins in the

range [p0; p1] which may be better than the current coin we have. Therefore, the error

probability of our best coin may be as much as the gap size of the last sequential test away

from the true best coin. Since we know from Lemma 2 that the gap size is O(�), the error

probability of the coin algorithm FindExpert outputs is

b t

ln2 t

+ O(�) = b t

ln2 t

+O(

r
1

ln t
)

It remains then to compute the probability that there are any problems with the test

sequence.

Pr(any problem with the test sequence) = Pr(ever accepting a bad coin)

+ Pr(not accepting any good coin)

+ Pr(the last gap is greater than O(�))

We will compute each of these in turn. The probability of accepting one bad coin is

shown to be t
2p
ln t

t2
with probability 1 � 1=t2 in Lemma 3, and with probability 1=t2 it could

be as high as 1. Summing we get Pr(accepting one bad coin) = O(t
2p
ln t

t2
).

The probability of ever accepting a bad coin is, at most, the number of lead changes

times the probability of accepting a bad coin,

Pr(ever accepting a bad coin) � (ln
t

ln2 t
)
t

2p
ln t

t2
= O(

(ln t)t
2p
ln t

t2
):

Note that (ln t)t
2p
ln t < (ln t)t for t > e

(2

)2
. For < 1, (ln t)t is known to be O(t). Thus

we can conclude that the

Pr(ever accepting a bad coin) = O(
1

t
):

To �nish the computation, it is easy to see that

Pr(not accepting any good coin) � (Number of coins tested)�

=
t

log2t
�
1

t2

= O(
1

t
)

and

Pr(the last gap is greater than O(�)) =
1

t2
= O(

1

t
)

from Lemma 2.

To summarize, Theorem 5 shows that the algorithm FindExpert, which �nds a low

error coin from coins drawn according to an unknown distribution using the ratio test to

test each coin, does almost as well as we can do knowing the error probabilities, but seeing

only t= ln2 t coins. The result of Theorem 5 is independent of the distribution of the coins.

115

The length of the ratio test does not change for any distribution, but depending on the

distribution the best error rate of t= ln2 t randomly chosen coins is very close or very far

away from the best error rate of t randomly chosen coins. For example for a jar of fair coins

bt= ln2 t = bt because no coin will be better than the �rst coin you pick. On the other hand,

for coins distributed uniformly bt = 1=t which is much less than bt= ln2 t = ln2 t=t.

6.3 A Faster (?) Test for Experts

A disadvantage of the ratio test in the previous section is that the length of each test is

�xed. This length is chosen so as to guarantee (with high probability) a good determination

as to whether the tested coin has error rate at least � better than the current best coin. For

coins that are much better or much worse, it may be possible to make this determination

with many fewer trials.

The sequential ratio test given by Wald (1947) solves precisely this problem. After each

coin toss it assesses whether it is su�ciently sure that the tested coin is better or worse

than the current best coin. If not, the test continues. The sequential ratio test thus uses

a variable number of ips to test a coin. One can hope that for the same probability of

erroneous acceptances and rejections, the sequential ratio test will use fewer coin ips than

the ratio test. Although the worst case sample size is larger for the sequential ratio test,

Wald (1947) shows that in experiments with normally distributed error rates the sequential

test is on average twice as e�cient as the ratio test. Section 6.4 gives our experimental

results comparing expert-�nding algorithms based on the ratio test and on the sequential

ratio test.

The rest of this section gives the sequential ratio test and the corresponding expert-

�nding algorithm.

6.3.1 The Sequential Ratio Test

This section describes the sequential ratio test due to Wald (1947). It furthermore gives

the operating characteristic function and the average sample number of the test, which are

important to the proof analysis of the expert-�nding algorithm.

The Problem Given a coin with unknown failure rate p, and thresholds p0, p1 with p0 <

p1. Test if p � p0 vs. p � p1. Accept if p � p0. Reject if p � p1.

Requirements The probability of rejecting a coin does not exceed � if p � p0, and the

probability of accepting a coin does not exceed � if p � p1.

The Test Let m be the number of samples, and fm be the number of failures in m samples.

Reject if

fm �
log 1��

�

log p1
p0
� log 1�p1

1�p0
+m

log 1�p0
1�p1

log p1
p0
� log 1�p1

1�p0
:

Accept if

fm �
log �

1��
log p1

p0
� log 1�p1

1�p0
+m

log 1�p0
1�p1

log p1
p0
� log 1�p1

1�p0
:

Otherwise, draw another sample.

116

Figure 6-1: A graphical depiction of a typical sequential ratio test

The sequential ratio test de�nes two lines with di�erent intercepts and the same slope.

The region above the upper line is a reject region. The region below the lower line

is the accept region. The test generates a random walk starting at the origin which

terminates when it reaches one of the two lines. (See Figure 6-1 for a graphical

depiction of the sequential ratio test.)

Operating Characteristic Function Let the function

L(p) = probability that the coin will be accepted when p is the true probability of

failure.

The value of the function L(p) is

L(p) =

�
1��
�

�h
� 1�

1��
�

�h
�
�

�
1��

�h
where

p =
1�

�
1�p1
1�p0

�h
�
p1
p0

�h
�
�
1�p0
1�p1

�h :
The parameter h can be any non-zero value. For any arbitrary value of h, the point

[p; L(p)] is a point on the Operating Characteristic function. Speci�c values of L(p)

of interest are L(0) = 1, L(1) = 0, L(p0) = 1� �, and L(p1) = �.

A typical operating characteristic function looks like the graph in Figure 6-2.

Average Sample Number Let the random variable n be the number of observations

required by the test procedure, and Ep(n) be the expected value of n. Wald shows

that

Ep(n) =
L(p) log �

1�� + (1� L(p)) log 1��
�

p log p1
p0
+ (1� p) log 1�p1

1�p0

The average sample number function has the shape of the graph in Figure 6-3. Its

value is largest at (or close to) the point p = s =
log

1�p0
1�p1

log
p1
p0
�log 1�p1

1�p0

. The value of the

117

β

1−α

Figure 6-2: A typical operating characteristic function of the sequential ratio test

Figure 6-3: The typical shape of the average sample number of the sequential ratio test

118

average sample number at this point is

Es(n) =
� log �

1�� log
1��
�

log p1
p0
log 1�p0

1�p1
:

6.3.2 Finding a Good Expert Using the Sequential Ratio Test

The algorithm for �nding a good coin using the sequential ratio test is as follows.

Algorithm 18 SeqFindExpert:

Input: t, an upper bound on the number of trials allowed.

Let BestCoin = Draw a coin.

Flip BestCoin ln3 t times to �nd bp.
Set p1 = bp.
Repeat until all t trials are used:

Let p0 = p1 � �(p1), where �(p1) =
q

4p1(1�p1)
log t .

Let Coin = Draw a coin.

Test Coin using the sequential ratio test

with parameters p0, p1, and � = � = 1=t2.

If the sequential test accepts then

Set BestCoin = Coin.

Flip BestCoin log3 t more times to �nd an improved bp.
Set p1 = bp.

Output BestCoin.

6.3.3 E�ciency of Algorithm SeqFindExpert

Because the worst case number of coin ips for the sequential ratio test is larger than the

(�xed) number of coin ips for the ratio test, the bound in Theorem 6 for SeqFindExpert

ratio test is not as strong as the bound shown above for FindExpert.

Theorem 6 There is an algorithm (SeqFindExpert) such that when the coins are drawn

according to an unknown error-rate distribution, after t trials, with probability at least 1�
1=t, we expect to �nd a coin whose probability of error is at most bt= log3 t + O(1p

log t
).

This theorem states that after t trials, we expect the algorithm to �nd an expert that

is almost as good as the best expert in a set of t= log3 t randomly drawn experts (bt= log3 t).

Like Theorem 5 this result is independent of the distribution. Since the result is based on

the worse case sample size the tests may be shorter and thus the algorithm may examine

more coins. The rest of this section proves Theorem 6. The proof is very similar to the

proof of Theorem 5.

Lemma 7 shows that the expected length of each test is short (log3 t trials at most).

Lemma 7 The expected length of each sequential ratio test with parameters p1, p0 = p1��,
� = � = 1=t2 is at most log3 t.

Proof: We compute the value of the average sample number with the given parameters for

the point p = s where the average sample number is largest.

Es(n) =
� log �

1�� log
1��
�

log p1
p0
log 1�p0

1�p1

119

�
4 log2 t

log p1
p1�� log

1�p1+�
1�p1

�
4 log2 t
�
p1

�
1�p1

=
4(log2 t)p1(1� p1)

4p1(1�p1)
log t

= log3 t:

Again we must consider what the e�ects of estimating the error probability of the best

coins are. Lemma 2, which shows that with probability 1� 1=t2, estimating the error prob-

ability of a coin with log3 t coin tosses gives a testing gap of size O(�) = O(1=
p
log t), holds

for SeqFindExpert since its proof relies only on the sample size used to estimate the error

probability of the coin.

Recall that when the true error probability of the current best coin (p) is smaller than

the estimated error probability, i.e., p 2 [p0; p1], we have some chance of accepting coins

with error probability in the range (p; p1]). These coins are worse than the current best.

We must show that this probability is small for the sequential ratio test using the operating

characteristic function.

Lemma 8 With probability 1 � 1=t2, estimating the error probability of a coin with log3 t

coin tosses gives the sequential test an O(t
2p
log t

t2
) probability of accepting a coin with error

probability p1.

Proof: If the estimate bp � p then it is clear that the probability of accepting a coin with error

probability greater than p1 (which is equal to bp and thus is less than p) is at most � = 1=t2

since the operating characteristic function is monotonically decreasing with increasing p (see

the �gure below).

If p < bp then p is in the range [p0; p1] since p1 = bp > p. Thus there is a higher proba-

bility of accepting coins with error probability less than p, since the operating characteristic

function is monotonically increasing with decreasing p.

Recall the operating characteristic function for the sequential ratio test is

L(q) = the probability of accepting a coin with probability q:

The probability of accepting any coin in the range [p; p1] is at most L(p) (as the following

graph demonstrates.)

β

120

Appendix B shows that with probability 1�1=t2, bp is within O(plog t) standard deviations
of p. So we want to compute L(p1 �

p
log t�bp).

Recall that the operating characteristic function is

L(q) =

�
1��
�

�h
� 1�

1��
�

�h
�
�

�
1��

�h
where

q =
1�

�
1�p1
1�p0

�h
�
p1
p0

�h
�
�
1�p0
1�p1

�h
and h is any non-zero value.

For the parameter settings in the sequential tests of algorithm SeqFindExpert we �nd

that

L(q) =
(t2 � 1)h � 1

(t2 � 1)h � (t2 � 1)�h

and from Appendix C we know that

q � p1 �
h+ 1

2
�:

We can now compute the value of the operating characteristic function at the point

q = p1 �
p
log t�bp. First we �nd the value of h at this point. We know that h+1

2
� � 1

2 log t .

Solving for h we get

h =
1

� log t
� 1 = �1 + �

where � � 1p
log t

.

And to �nish the proof of the claim

L(p1 �
p
log t�bp) � t2(�1+�) � 1

t2(�1+�) � t�2(�1+�)

�
t2(1��)

t4(1��)

=
t2�

t2

=
t

2p
log t

t2
:

Now we can compute the number of coins we expect the algorithm to test.

Lemma 9 The expected number, N , of coins algorithm SeqFindExpert tests is O(t= log3 t)

Proof:

We know that the algorithm takes total time t, and we can compute the time that the

algorithm takes for N coins. Estimating the initial coin takes log3 t time. Each time we

accept a coin (at most logN + o(1) times from Appendix D), it is tested log3 t times. And

each sequential test takes log3 t expected time in the worst case. Summarizing we have

log3 t+N log3 t+ (logN + o(1)) log3 t = t

121

Thus

N = O(
t

log3 t
):

Finally the proof of Theorem 6 is virtually identical to the proof of Theorem 5.

Proof of Theorem 6: With probability 1� Pr(any problem with the test sequence), after

t trials we will see O(t= log3 t) coins and have the lowest error coin among them. Notice

that the last series of sequential tests (i.e., since the last accepted coin) may have rejected

coins in the range [p0; p1] which may be better than the current coin we have. Therefore,

the error probability of our best coin may be as much as the gap size of the last sequential

test away from the true best coin. Since we know from Lemma 2 that the gap size is O(�),

the error probability of the coin algorithm SeqFindExpert outputs is

b t

log3 t

+O(�) = b t

log3 t

+ O(

s
1

log t
)

It remains then to compute the probability that there are any problems with the test

sequence.

Pr(any problem with the test sequence) = Pr(ever accepting a bad coin)

+ Pr(not accepting any good coin)

+ Pr(the last gap is greater than O(�))

Pr fnot accepting any good coing and Pr fthe last gap is greater than O(�)g are shown

to be O(1
t
) in the proof of Theorem 5.

The probability of accepting one bad coin is O(t
2p
log t

t2
), and the probability of ever ac-

cepting a bad coin is

Pr(ever accepting a bad coin) � (log
t

log3 t
)
t

2p
log t

t2
= O(

(log t)t
2p
log t

t2
) = O(

1

t
):

Theorem 6 shows that algorithm SeqFindExpert, which uses the sequential ratio test

to �nd a low error-rate coin from coins drawn according to an unknown distribution, does

almost as well as it could do if coins were labeled with their error rates, but it sees only

t= log3 t coins. The proof of Theorem 6 is similar to the proof of Theorem 5. The bound

in Theorem 6 is not as tight as the bound for the FindExpert. In practice, however,

SeqFindExpert often performs better because the test lengths are much shorter than the

worst case test length used to prove Theorem 6.

For some distributions, such as the uniform distribution, the coins tested are typically

much worse than the current best. (After seeing a few coins the algorithm already has

a fairly good coin and most coins are much worse.) Thus, the sequential ratio tests will

be short. When the error rates are uniformly distributed we expect that the algorithm

SeqFindExpert will see more coins and �nd a better coin than FindExpert. This argu-

ment is con�rmed by our empirical results below. Our results also show the superiority of

SeqFindExpert when the error rates are drawn from a (truncated) normal distribution.

122

6.4 Empirical Comparison of FindExpert and SeqFindEx-

pert

Coins Tested Test Length Best Estimated Best Actual

Error Rate Error Rate

FindExpert 7:6 49 :1085 :1088

SeqFindExpert 21 44 :0986 :0979

(a) Uniform distribution; limit of t = 1000 trials.

Coins Tested Test Length Best Estimated Best Actual

Error Rate Error Rate

FindExpert 66 100 :0185 :0187

SeqFindExpert 230 33 :01 :0101

(b) Uniform distribution; limit of t = 10000 trials.

Table 6.1: Empirical comparison of FindExpert and SeqFindExpert with the uniform

distribution. The numbers in the tables are averaged over 1000 runs.

To compare the performance of FindExpert and SeqFindExpert we ran experiments

for uniform and normally distributed error rates. (The normal distribution has mean 0:5,

standard deviation 0:09, and was truncated to lie within the interval [0; 1].) Table 6.1 gives

results for both algorithms on the uniform distribution. All results reported are an average

over 1000 repeated executions of the algorithm. Table 6.1(a) contains the average of 1000

runs each with trial limit t = 1000. Table 6.1(a) shows that the SeqFindExpert algorithm

had shorter average test lengths and therefore tested more experts. SeqFindExpert was

able to �nd experts with lower actual error rate (:0979 on the average compared with

:1088 for FindExpert). The table contains both the average actual error rate of the best

experts that the algorithm found and the average error rate from experiments for the same

experts. Table 6.1(b) shows that given more time (t = 10000 trials) to �nd a good expert

SeqFindExpert performs signi�cantly better than FindExpert. The average test length

is much shorter and the resulting best error rate is :0101 compared with :0187.

Experiments with the normal distribution used a normal with mean 0:5 and standard

deviation 0:09. These results are reported in Table 6.2. Note that for this distribution

most coins have error rate close to :5. Table 6.2(a) reports the average of 1000 executions

with trial limit 1000. As expected, the average error probabilities of the best coin is lower

for the SeqFindExpert algorithm. Table 6.2(b) shows that with a longer limit of 10000

trials the SeqFindExpert algorithm performs much better than FindExpert, giving an

average best error rate of :2741 compared with :3352.

It is interesting that with a time limit of 1000 trials the SeqFindExpert both tested

more experts and had a longer average test length. The long average test is due to a few

very long tests (to compare close experts). For example, it is possible for one test in one of

the 1000 runs in Table 6.2(a) to have taken the complete 1000 trials allocated to that run

| remember that we expect the length of the tests to be log3 t, but this expectation does

not prohibit a long test. We �nd this problem with a normal distribution that is tightly

distributed about the mean and with short run of 1000 trials. When the runs are longer

(10000 trials) we �nd | as we expect | that more coins are tested by SeqFindExpert

123

Coins Tested Test Length Best Estimated Best Actual

Error Rate Error Rate

FindExpert 13 49 :4361 :4395

SeqFindExpert 29 61 :4144 :4204

(a) Normal distribution; limit of t = 1000 trials.

Coins Tested Test Length Best Estimated Best Actual

Error Rate Error Rate

FindExpert 85 100 :3292 :3352

SeqFindExpert 470 31 :2670 :2741

(b) Normal distribution; limit of t = 10000 trials.

Table 6.2: Empirical comparison of FindExpert and SeqFindExpert with the normal

distribution (mean 0:5, standard deviation 0:09) truncated at 0 and 1. The numbers in the

tables are averaged over 1000 runs.

with a shorter average test length. The reason long tests are more rare with longer runs is

that after some time the best coin is much better than the mean where the density of coins

is higher, so most coins drawn are much worse than the current best with a high trial limit

(but not with a low one).

Coins Tested Test Length Best Estimated Best Actual

Error Rate Error Rate

FindExpert 14 49 :4963 :5

SeqFindExpert 20 35 :4991 :5

(a) All coins are fair; limit of t = 1000 trials.

Coins Tested Test Length Best Estimated Best Actual

Error Rate Error Rate

FindExpert 91 100 :4989 :5

SeqFindExpert 120 74 :4988 :5

(b) All coins are fair; limit of t = 10000 trials.

Table 6.3: Empirical Comparison of FindExpert and SeqFindExpert with the distri-

bution where all the coins are fair. The numbers in the tables are averaged over 1000

runs.

It is also of interest to compare the performance of SeqFindExpert with that of Find-

Expert on a distribution where all the coins are fair. In this distribution both algorithms

will �nd a best coin that has error probability :5. The question of interest is how many coins

each algorithm examines. Table 6.3 shows results of running FindExpert and SeqFind-

Expert on a distribution of fair coins. We can see that SeqFindExpert examines a few

more coins than FindExpert examines. The di�erence in the number of coins tested is not

124

large, especially compared with the di�erences with other distributions. This result sup-

ports the interpretation that signi�cant improvement using SeqFindExpert occurs when

most coins tried are much worse than the best coin found.

The experimental results in this section show that SeqFindExpert performs better

than FindExpert for distributions with di�erent characteristics. The experimental results

agree with the theoretical analysis in that some sequential tests are quite long (longer than

the ratio tests), but the experiments also show that on the average the sequential test

lengths are short especially when the trial limit is large. The average test length is short

when the time limit is large because the best expert is already much better than the average

population.

6.5 Conclusions

This chapter presented two algorithms to �nd a low error expert from a sequence of experts

with unknown error-rate distribution, a problem that arises in many areas, such as the

given example of learning a world model consisting of good rules. The two algorithms

FindExpert and SeqFindExpert are nearly identical, but use the ratio test and sequential

ratio test respectively to determine if an expert is good.

Theorem 5 shows that FindExpert �nds an expert which is the best expert of t= ln2 t

experts, given trial limit t. This result is strong in the sense that it shows only a factor

of ln2 t loss from testing over the best expert we could �nd in t trials if we knew the exact

error rate of each expert. Theorem 6 gives a weaker bound for SeqFindExpert. Empirical

results in section 6.4, on the other hand, indicate that SeqFindExpert performs better

than FindExpert in practice (at least for the uniform and normal distributions).

The obvious open question from this work is to prove that SeqFindExpert expects to

�nd a lower error-rate expert for general or speci�c distributions than FindExpert.

125

126

Chapter 7

Conclusion

This thesis explored principles of e�cient learning in environments with manifest causal

structure. Algorithms to learn a rule-based world model and high-level concepts in envi-

ronments with manifest causal structure were presented.

The rule-learning algorithm from chapter 3 excels at �nding correlations in the envi-

ronment. It aims toward simplicity using straightforward algorithms that rely heavily on

perceptions and represent learned knowledge with the simplest possible format. Several

environment independent heuristics are employed in the process of creating rules, such as

observing the value of the a�ected relations in the previous state and using mysteries to

replay unexplained e�ects. The process of evaluating and removing rules is based on sound

statistical techniques which are important to proving the convergence of the rule-learning

algorithm to a good predictive model in environments with manifest causal structure. Con-

vergence does not guarantee that the world model is perfect after any �nite time. Empirical

results in the Macintosh environment, however, show that the learned world model is useful

in a short amount of time.

The main drawback of the world model learned by the rule-learning algorithm is the

large number of rules in the model. The abundance of rules is due in part to the learning

algorithm, which makes many rules, and in part to the representation of the world model

and perceptions. Since the rule-learning algorithm saves every valid rule, the resulting world

model contains some redundant rules.

This thesis also presented algorithms for learning high-level concepts. The concept-

learning algorithms are interesting both philosophically | to show that the concepts are

learnable | and practically | to reduce redundancy in the world model. Two types of

concept-learning algorithms were developed in this research. The �rst concept-learning

algorithm uses noaction rules to �nd and collapse correlated perceptions which are in-

terpreted as new relations and new objects. The second type of concept learning includes

creating generalizations of the speci�c learned rules. In the Macintosh Environment these

concept-learning algorithms learn concepts, such as the concept of an active window and

the general rule that a click in a window causes it to be active. Both concept-learning algo-

rithms are imperfect when the learned world model is incomplete or incorrect. They may

develop incorrect concepts or miss an important concept. Since the rule-learning algorithm

cannot guarantee perfect knowledge, an important direction for future research is to make

the concept-learning algorithms robust to missing or incorrect rules.

The empirical e�ectiveness of the learning algorithm in this thesis, as well as the theo-

retical convergence result, shows that in environments with manifest causal structure world

127

models are e�ciently learnable. This research indicates that it pays to concentrate on

learning \easy" aspects of the environment �rst. The di�cult or hidden aspects of the

environment can be learned as a next step.

Learning the manifest aspects of the environment �rst identi�es the di�cult aspects of

the environment. After the agent has learned a world model it knows which aspects of the

environment it does not understand because it has no rules to explain those aspects of the

environment. Knowing what it does not know may be as important as knowing what it

does know because the aspects of the environment that it does not understand are probably

the di�cult, hidden, or non-deterministic aspects of the environment.

The algorithms in this thesis learn a working world model of the Macintosh environment.

The world model predicts well and contains valid rules about the Macintosh environment.

Many of the rules in the world model are general and describe important concepts, but

the number of rules in the world model remains large and includes many speci�c rules. A

worthy goal for future research is to reduce the number of rules to a small set of general rules

that correspond to the complete model people use for the Macintosh. Another direction

for future work is to include additional aspects of the Macintosh operating system and

applications in the environment.

128

Appendix A

More General Rules in the

Macintosh Environment

This appendix presents additional rules that the rule generalization algorithm learned in

the Macintosh environment. For each general rule an English description is given as well as

the speci�c rules that led to its creation.

1. A click in a close-box makes the grow-box of the same window disappear

NIL ! click-in Window 1 CB ! EXIST (Window 1 GB) = NP

NIL ! click-in Window 2 CB ! EXIST (Window 2 GB) = NP

TY PE(y) = GB ^OV (y; x) = F ^ TY PE(x) = CB ^X(x; y) = 1122

^Y (x; y) = 1122 ^ OV (x; y) = F

! click-in x ! EXIST (y) = NP

2. A click in a close-box makes the zoom-box of the same window disappear

NIL ! click-in Window 1 CB ! EXIST (Window 1 ZB) = NP

NIL ! click-in Window 2 CB ! EXIST (Window 2 ZB) = NP

TY PE(y) = ZB ^ OV (y; x) = F ^ TY PE(x) = CB ^X(x; y) = 1122

^Y (x; y) = 33 ^OV (x; y) = F

! click-in x ! EXIST (y) = NP

3. A click in a close-box makes the active-title-bar of the same window disappear

NIL ! click-in Window 1 CB ! EXIST (Window 1 ATB) = NP

NIL ! click-in Window 2 CB ! EXIST (Window 2 ATB) = NP

TY PE(y) = ATB ^ TY PE(x) = CB ^X(x; y) = 2112 ^ Y (y; x) = 1122

^OV (x; y) = T

! click-in x ! EXIST (x) = NP

129

4. A click in a title bar makes that title-bar disappear.

NIL ! click-in Window 1 TB ! EXIST (Window 1 TB) = NP

NIL ! click-in Window 2 TB ! EXIST (Window 2 TB) = NP

TY PE(x) = TB ! click-in x ! EXIST (x) = NP

5. A click in a window rectangle make the corresponding title bar disappear.

NIL ! click-in Window 1 ! EXIST (Window 1 TB) = NP

NIL ! click-in Window 2 ! EXIST (Window 2 TB) = NP

TY PE(y) = TB ^ OV (y; x) = T ^ TY PE(x) = REC ^X(x; y) = 33

^Y (x; y) = 2211

! click-in x ! EXIST (y) = NP

6. A click in a window interior makes the corresponding title-bar disappear.

NIL ! click-in Window 1 INTERIOR ! EXIST (Window 1 TB) = NP

NIL ! click-in Window 2 INTERIOR ! EXIST (Window 2 TB) = NP

TY PE(y) = TB ^ OV (y; x) = F ^ TY PE(x) = REC ^X(x; y) = 33

^Y (x; y) = 2211 ^ OV (x; y) = F

! click-in x ! EXIST (y) = NP

7. A click in a zoom-box makes a rectangle that is part of another window disappear.

EXIST (NEW-WINDOW2) = T ! click-in Window 1 ZB !
EXIST (Window 2) = NP

EXIST (NEW-WINDOW2) = T ! click-in Window 1 ZB !
EXIST (Window 2 INTERIOR) = NP

EXIST (z) = T ^ TY PE(y) = REC ^OV (yx) = F ^ PART-OF(y; z) = T

^TY PE(x) = ZB ^X(x; y) = 2211 ^ Y (x; y) = 1122 ^OV (x; y) = F

! click-in x ! EXIST (y) = NP

8. A click in a rectangle makes the close-box of another window disappear.

NIL ! click-in Window 1 INTERIOR ! EXIST (Window 2 CB) = NP

NIL ! click-in Window 1 ! EXIST (Window 2 CB) = NP

130

TY PE(y) = CB ^X(y; x) = 1122 ^ Y (y; x) = 2211 ^OV (y; x) = F

^TY PE(x) = REC

! click-in x ! EXIST (y) = NP

9. a click in a rectangle makes the zoom-box of another window disappear.

NIL ! click-in Window 1 INTERIOR ! EXIST (Window 2 ZB) = NP

NIL ! click-in Window 1 ! EXIST (Window 2 ZB) = NP

TY PE(y) = ZB ^X(y; x) = 2112 ^ Y (y; x) = 2211 ^ OV (y; x) = T

^TY PE(x) = REC

! click-in x ! EXIST (y) = NP

10. A click in a rectangle makes any button-dialog-item that overlaps that rectangles

present.

NIL ! click-in Window 1 !
EXIST (Window 1 BUTTON-DIALOG-ITEM Window 2) = T

NIL ! click-in Background !
EXIST (Window 1 BUTTON-DIALOG-ITEM Window 2) = T

NIL ! click-in Window 1 INTERIOR !
EXIST (Window 1 BUTTON-DIALOG-ITEM Window 2) = T

TY PE(y) = BUTTON-DIALOG-ITEM^ OV (y; x) = T

^TY PE(x) = REC ^X(x; y) = 1221 ^ Y (x; y) = 2211

! click-in x ! EXIST (y) = T

11. The active-title-bar of a window does not overlap its interior after a click

in a window's title-bar.

NIL ! click-in Window 1 TB !
OV (Window 1 ATB, Window 1 INTERIOR) = F

NIL ! click-in Window 2 TB !
OV (Window 2 ATB, Window 2 INTERIOR) = F

TY PE(z) = REC ^OV (z; x) = F ^ TY PE(y) = ATB ^X(y; z) = 33

^Y (y; z) = 132^ OV (y; z) = F ^ TY PE(x) = TB ^X(x; z) = 33

^Y (xz) = 132 ^ OV (xz) = F ^OV (z; y) = F

! click-in x ! OV (y; z) = F

131

132

Appendix B

The Distance of cp from p

Claim 1 With probability 1�1=t2, bp is not farther than O(
p
ln t) standard deviations from

p.

Proof:

The random variable bp has standard deviation �2bp =
r

p(1�p)
log3 t

. We want to �nd the value, q,

such that the probability that bp � q is very small, say 1=t2.

Let q be some number of standard deviations from the true error probability p, i.e.

q = p� c�bp. We want to �nd c such that

Pr(bp � p� c�bp) � 1=t2:

Let bp = S=n, n = log3 t. We can then rewrite the left-hand side of the above equation as

Pr(S �

1 + c

s
1� p

p log3 t

!
pn):

Now using Cherno� bounds and simplifying we �nd that

Pr(bp � p� c�bp) � ec
2=3:

We want

ec
2=3 = 1=t2

c2 = O(ln t)

Thus with probability 1 � 1=t2, bp is not farther than O(
p
ln t) standard deviations from

p.

133

134

Appendix C

A Closed Form Estimate For the

Operating Characteristic Function

Claim 2 For small � and p0 = p1 � �,

p =
1�

�
1�p1
1�p0

�h
�
p1
p0

�h
�
�
1�p0
1�p1

�h
is approximated by

p = p1 �
h+ 1

2
�:

Proof:

p =
1�

�
1�p1

1�p1+�

�h
�

p1
p1��

�h
�
�

1�p1
1�p1+�

�h
=

1�
�
1 + �

1�p0

�h
�
1� �

p1

�h
�
�
1 + �

1�p0

�h
Using the order 2 Taylor Polynomial approximation

(1� x)h � 1� hx+
h(h � 1)

2
x2

�
1�

�
1� h�

1�p1 +
�h(�h�1)�2
2(1�p1)2

�
�
1 + h�

p1
+

�h(�h�1)�2
2p21

�
�
�
1� h�

1�p1 +
�h(�h�1)�2
2(1�p1)2

�
=

1
1�p1 +

(�h�1)�
2(1�p1)2

1
p1
� (�h�1)�

2p2
1

+ 1
1�p1 +

(�h�1)�
2(1�p1)2

=
p1

�
1� (h+1)�

2(1�p1)

�
1 +

(h+1)�(1�2p1)
2p1(1�p1)

135

� p1

�
1�

(h+ 1)�

2(1� p1)

��
1�

(h+ 1)�(1� 2p1)

2p1(1� p1)

�
� p1

�
1�

(h+ 1)�

2(1� p1)
�
(h+ 1)�(1� 2p1)

2p1(1� p1)

�
= p1 �

h+ 1

2
�

136

Appendix D

The Expected Number of Coins

Accepted by Algorithm

SeqFindExpert

Lemma 10 The expected number of coins accepted by algorithm SeqFindExpert is logN+

o(1) where N is the number of coins tested.

Proof: We want to compute F (i) = the expected number of coins accepted from i coins

We will show, by induction, that F (i) � log i+ 1
(1����0)i � 1

Base Case: F (1) = Pr(no mistakes) � log 1 + Pr(mistake) � 1 = � + �0

We can verify that F (1) � log 1 + 1
1����0 � 1 � �+ �0

Induction Step: We know that to �nd the smallest of N numbers, the expected number

of times we change the current minimum is logN (see (Knuth 1968).)

Algorithm SeqFindExpert will do worse by either accepting a worse coin than the

current minimum (with probability �0 = t

2p
log t

t2
or not accepting a lower coin than the

current minimum (with probability �.) If this mistake happens at trial i, it will lead to at

most F (N � i) lead changes.

The expected total number of lead changes is

F (N) � Pr(no mistakes) � logN +
NX
i=1

Pr(1st mistake at time i) � [F (N � i) + 1]

= (1� �� �0)N logN +
NX
i=1

(1� � � �0)i�1(�� �0)[F (N � i) + 1]

= (1� �� �0)N logN + (1� (1� � � �0)N) + (�� �0)
NX
i=1

(1� �� �0)i�1F (N � i)

Substituting F (i) � log i+ 1
(1����0)N � 1 for i < N

F (N) � (1� �� �0)N logN + (1� (1� � � �0)N)

+(�� �0)
NX
i=1

(1� � � �0)i�1(log(N � i) +
1

(1� �� �0)N�i
� 1)

� (1� �� �0)N logN + (1� (1� � � �0)N)

137

+(�� �0)(logN +
1

(1� �� �0)N
� 1)

NX
i=1

(1� � � �0)i�1

= (1� �� �0)N logN + (1� (1� � � �0)N)

+(logN +
1

(1� �� �0)N
� 1)(1� (1� �� �0)N)

= logN + (1� (1� �� �0)N)
1

(1� � � �0)N

= logN +
1

(1� �� �0)N
� 1

This completes the inductive proof.

Now we know that F (N) � logN + 1
(1����0)N � 1. Furthermore, 1

(1����0)N � 1 �

N(�+ �0). Lemma 4 shows that N = O(t
log2 t

) which gives a number of lead changes

F (N) � logN + o(1)

for � and �0 in o(1=t).

138

Bibliography

Allen, J. F. (1984), `Towards a general theory of action and time', Arti�cial Intelligence

23, 123{154.

Angluin, D. (1987), `Learning regular sets from queries and counterexamples', Information

and Computation 75, 87{106.

Baase, S. (1988), Computer Algorithms: Introduction to Design and Analysis, Addison{

Wesley, California.

Baker, A. B. & Ginsberg, M. L. (1989), Temporal Reasoning and Narrative Conventions,

in `Proceedings, IJCAI-89', Cambridge, MA, pp. 15{21.

Berwick, R. C., ed. (1985), The Acquisition of Syntactic Knowledge, The MIT Press, Cam-

bridge, MA.

Booker, L. B. (1988), `Classi�er Systems that Learn Internal World Models',Machine Learn-

ing 3, 161{192.

Dean, T., Angluin, D., Basye, K., Engelson, S., Kaelbling, L. P., Kokkevis, E. & Maron, O.

(1992), Inferring Finite Automata with Stochastic Output Functions and an Applica-

tion to Map Learning, in `Proceedings, AAAI-92', San Jose, CA, pp. 208{214.

Dean, T., Kaelbling, L. P., Kirman, J. & Nicholson, A. (1993), Planning With Deadlines in

Stochastic Domains, in `Proceedings, AAAI-93', Washington, DC, pp. 574{579.

Drescher, G. L. (1989), Made-Up Minds: A Constructivist Approach to Arti�cial Intelli-

gence, PhD thesis, MIT.

Drescher, G. L. (1991), Made-Up Minds: A Constructivist Approach to Arti�cial Intelli-

gence, The MIT Press, Cambridge, MA.

Fikes, R. E. & Nilsson, N. J. (1971), `STRIPS: A new approach to the application of theorem

proving to problem solving', Arti�cial Intelligence 2, 189{208.

George�, M. P. & Lansky, A. L. (1987), Reactive Reasoning and Planning, in `Proceedings

of Robotics and Automation', Seattle, WA, pp. 677{682.

Grimmett, G. R. & Stirzaker, D. R. (1982), Probability and random processes, Oxford

University Press, New York.

Hanks, S. & McDermott, D. V. (1985), Temporal Reasonsing and Default Logics, Technical

Report YALEU/CSD/RR 430, Department of Computer Science, Yale University.

139

Hanks, S. & McDermott, D. V. (1987), `Nonmonotonic Logic and Temporal Projection',

Arti�cial Intelligence 33, 379{412.

Holland, J. H. (1976), Adaptation, in R. Rosen & F. Snell, eds, `Progress in theoretical

biology (Vol. 4)', Academic Press.

Holland, J. H. (1985), Properties of the bucket brigade algorithm, in `First International

Conference on Genetic Algorithms and Their Applications', Pittsburg, PA, pp. 1{7.

Jaakkola, T., Jordan, M. I. & Singh, S. P. (1994), `On the Convergence of Stochastic

Iterative Dynamic Programming Algorithms', Neural Computation 6(6), 1185{1201.

Kaelbling, L. P. (1987), An Architecture for Intelligent Reactive Systems, in M. P. George�

& A. L. Lansky, eds, `Reasoning About Actions and Plans', Morgan Kaufmann,

pp. 395{410.

Kaelbling, L. P. (1990), Learning in Embedded Systems, Technical Report TR-90-04, Teleos

Research.

Kearns, M. J. & Vazirani, U. V. (1994), An Introduction to Computational Learning, The

MIT Press, Cambridge, Massachusetts.

Knuth, D. E. (1968), The Art of Computer Programming, Addison{Wesley, California.

Laird, J. E., Newell, A. & Rosenbloom, P. S. (1978), `SOAR: An Architecture for General

Intelligence', Arti�cial Intelligence 33, 1{64.

Lieberman, H. (1993), Mondrian: a Teachable Graphical Editor, in A. Cypher, ed., `Watch

what I do: Programming by Demonstration', The MIT Press.

Maes, P. (1991), Learning Behavior Networks from Experience, in F. Varela & P. Bourgine,

eds, `Toward A Practice of Autonomous Systems: Proceedings of the First European

Conference on Arti�cial Life', The MIT Press, pp. 48{57.

Maes, P. & Kozierok, R. (1993), Learning Interface Agents, in `Proceedings, AAAI-93',

Washington, DC, pp. 459{465.

Mataric, M. J. (1994), Reward Functions for Accelerated Learning, in W. W. Cohen &

H. Hirsh, eds, `Machine Learning: Proceedings of the Eleventh International confer-

ence', New Brunswick, NJ, pp. 181{189.

McDermott, D. V. (1982), `A temporal logic for reasoning about processes and plans',

Cognitive Science 6, 101{155.

Newell, A., Shaw, J. C. & Simon, H. A. (1957), Preliminary Description of General Problem

Solving Program-I (Gps-i), Technical Report CIP Working Paper 7, Carnegie Institute

of Technology.

Pazzani, M. J., Brunk, C. A. & Silverstein, G. (1991), A knowledge-intensive Approach to

Relational Concept Learning, in `Proceedings of the Eighth International Workshop

on Machine Learning', pp. 432{436.

140

Pearl, J. & Verma, T. S. (1991), A Theory of Inferred Causation, in `Proceedings of the

Second Internation Conference on the Principles of Knowledge Representation and

Reasoning', pp. 441{452.

Ramstad, R. M. (1992), A Constructivist Approach to Arti�cial Intelligence Reexamined,

PhD thesis, MIT.

Rice, J. A. (1988),Mathematical Statistics and Data Analysis, Wadsworth & Brooks/Cole,

Paci�c Grove, CA.

Richards, B. L. & Mooney, R. J. (1992), Learning Relations by Path�nding, Technical

Report AI 92-172, Arti�cial Intelligence Laboratory, The University of Texas at Austin.

Rivest, R. L. & Schapire, R. E. (1989), Inference of Finite Automata Using Homing Se-

quences, in `Proceedings of the Twenty-First Annual ACM Symposium on Theory of

Computing', Seattle, WA, pp. 411{420.

Rivest, R. L. & Schapire, R. E. (1990), A New Approach to Unsupervised Learning in

Deterministic Environments, in `Proceeding of the Twenty-Eighth Annual Symposium

on Foundations of Computer Science', Los Angeles, CA, pp. 78{87.

Rumelhart, D. E. & McClelland, J. L. (1986), Parallel Distributed Processing, The MIT

Press, Cambridge, MA.

Shen, W.-M. (1993), `Discovery as Autonomous Learning from the Environment', Machine

Learning 12, 143{165.

Sheth, B. & Maes, P. (1993), Evolving Agents For Personalized Information Filtering, in

`Proceedings of the Ninth IEEE Conference on Arti�cial Intelligence for Applications'.

Shoham, Y. (1986), Chronological Ignorance Time, Nonmonotonicity, Necessity and Causal

Theories, in `Proceedings, AAAI-86', pp. 389{393.

Shoham, Y. (1987), `Temporal Logics in AI: Semantical and Ontological Considerations',

Arti�cial Intelligence 33, 89{104.

Stein, L. A. & Morgenstern, L. (1991), Motivated Action Theory: A Formal Theory of

Causal Reasoning, Technical Report AIM-1338, MIT Arti�cial Intelligence Lab.

Sutton, R. S. (1990), First Results with DYNA, an Integrated Architecture for Learning,

Planning, and Reacting, in `Proceedings, AAAI-90', Cambridge, Massachusetts.

Sutton, R. S. (1991), Reinforcement Learning Architectures for Animats, in `First Interna-

tional Conference on Simulation of Adaptive Behavior', The MIT Press, Cambridge,

MA.

Sutton, R. S. & Barto, A. G. (1987), A temporal-di�erence model of classical condition, in

`Proceedings of the Ninth Annual Conference of the Cognitive Science Society', Seattle,

WA.

Sutton, R. S. & Barto, A. G. (1989), Time-Derivative Models of Pavlovian Reinforcement,

in M. Gabriel & J. W. Moore, eds, `Learning and Computational Neuroscience', The

MIT Press.

141

Wald, A. (1947), Sequential Analysis, John Wiley & Sons, Inc., Chapman & Hall, LTD.,

London.

Watkins, C. (1989), Learning from Delayed Rewards, PhD thesis, King's College.

Wilson, S. W. (1986), Knowledge Growth in an Arti�cial Animal, in K. Narendra, ed.,

`Adaptive and Learning Systems', Plenum Publishing Corporation.

Winston, P. H. (1992), Arti�cial Intelligence (Third Edition), Addison{Wesley, California.

142

